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Abstract

Hydroclimate volatility refers to sudden, large and/or frequent 
transitions between very dry and very wet conditions. In this Review, 
we examine how hydroclimate volatility is anticipated to evolve with 
anthropogenic warming. Using a metric of ‘hydroclimate whiplash’ 
based on the Standardized Precipitation Evapotranspiration Index, 
global-averaged subseasonal (3-month) and interannual (12-month) 
whiplash have increased by 31–66% and 8–31%, respectively, since the 
mid-twentieth century. Further increases are anticipated with ongoing 
warming, including subseasonal increases of 113% and interannual 
increases of 52% over land areas with 3 °C of warming; these changes 
are largest at high latitudes and from northern Africa eastward into 
South Asia. Extensive evidence links these increases primarily to 
thermodynamics, namely the rising water-vapour-holding capacity 
and potential evaporative demand of the atmosphere. Increases in 
hydroclimate volatility will amplify hazards associated with rapid 
swings between wet and dry states (including flash floods, wildfires, 
landslides and disease outbreaks), and could accelerate a water 
management shift towards co-management of drought and flood risks. 
A clearer understanding of plausible future trajectories of hydroclimate 
volatility requires expanded focus on the response of atmospheric 
circulation to regional and global forcings, as well as land–ocean–
atmosphere feedbacks, using large ensemble climate model 
simulations, storm-resolving high-resolution models and emerging 
machine learning methods.
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In this Review, we bring together knowledge of hydroclimate vola-
tility in the context of anthropogenic climate change. We first assess 
observed and projected changes in hydroclimate volatility. Next, we 
explore the underlying physical causes of these changes, before out-
lining their observed and theorized societal and ecological effects. 
Finally, we discuss outstanding questions and persistent uncertainties, 
offering potential solutions.

Changes in hydroclimate volatility
The characterization and quantification of observed and projected 
changes in hydroclimate volatility are influenced by the existence of 
various definitions and metrics. A holistic definition and quantitative 
metric of hydroclimate volatility is now offered, before synthesizing 
evidence of observed and projected trends.

Defining hydroclimate volatility
The quantification of hydroclimate volatility is challenged by the inher-
ent asymmetry in the spatiotemporal characteristics and underlying 
drivers of constituent wet and dry events24. Extreme precipitation can 
occur on timescales as short as minutes to hours and spatial scales 
as localized as a single neighbourhood in a large city25. In contrast, 
droughts typically unfold on timescales ranging from weeks to years26 
and can affect vast regions up to the scale of continents27,28. Moreover, 
whereas extreme wet events are essentially always caused by heavy 
precipitation, extreme dry events are generally caused by a combina-
tion of anomalously low precipitation and high evapotranspiration29, 
the relative importance of which can vary greatly between regions 
and events30–32.

This marked contrast between localized, short-duration wet 
extremes and spatially extensive, slowly evolving dry extremes com-
plicates efforts to produce a single quantitative metric capturing both 
ends of the hydroclimate spectrum. As a result, a wide range of language 
and definitions has emerged to characterize changes in hydroclimate 
volatility. Most common are precipitation-only (‘supply side’) defini-
tions, in which the role of evaporation or atmospheric evaporative 
demand is not evaluated (for example, those involving precipitation 
variability, intensity and/or duration of precipitation-free intervals)2,33. 
However, definitions incorporating evapotranspiration-related 
(‘demand side’) variables are increasingly favoured (for example, those 
involving potential evaporation, evaporative demand and/or vapour 
pressure deficit (VPD))1,5,24,30,34,35. Given observed non-stationarity of 
the climate system, there has been discussion regarding whether a 
universal definition of certain key hydroclimate variables is possible, 
or even desirable12,32,36–38.

In an attempt to overcome these challenges, here, a formal ‘hydro-
climate whiplash’ metric is introduced (Supplementary Information). 
This metric identifies large and rapid transitions in the Standardized 
Precipitation Evapotranspiration Index (SPEI)29, encompassing pheno
mena on the supply (precipitation) and demand (evapotranspira-
tion) sides of the distribution. Whiplash events are identified as those 
in which the temporal difference in monthly derived SPEI meets or 
exceeds the value associated with an approximate 10-year recurrence 
interval in the baseline data. The underlying SPEI is calculated on sub-
seasonal (up to 3 months) and interannual (up to 12 months) timescales 
at the grid box level and relative to the underlying seasonal cycle during 
the historical SPEI calibration period, thus accounting for the local 
background degree of hydroclimate variability and seasonality. The 
total number of hydroclimate whiplash events is calculated as the com
bined sum of wet-to-dry and dry-to-wet events. Observed whiplash is 

Introduction
Hydroclimatic variability manifests as fluctuations between unusually 
dry or wet meteorological conditions on timescales of days to decades. 
One component of this variability is hydroclimate volatility — a collective 
term describing anomalously frequent, sudden and/or high-magnitude 
transitions from wet-to-dry conditions or dry-to-wet conditions relative 
to a local baseline. From a water balance perspective, such extremes 
can be viewed as involving alternation between ‘supply surplus’ (that 
is, heavy precipitation causing an overabundance of water) and ‘supply 
deficit’ and/or ‘excess demand’ (that is, low precipitation and/or high 
evapotranspiration causing a deficit of water)1. Thus, hydroclimate 
volatility encompasses phenomena previously described using a wide 
range of language and terminology, including hydroclimatic intensity2,3 
or variability4, hydrological intensity1,5, event-to-event variation6, transi-
tions between wet and dry periods7, drought–pluvial seesaws8, drought 
and pluvial transitions9, consecutive dry and wet extremes10, compound 
whiplash events11, accelerated swings between dry and wet spells12, 
precipitation whiplash13–15, precipitation variability16–19, and weather20 
or climate21 whiplash.

Many such rapid dry-to-wet and wet-to-dry transitions have 
occurred across the globe — often posing formidable threats to human 
health and public safety, food and water security, and infrastructure 
(Fig. 1 and Supplementary Information). The impacts of such hydro-
climate volatility are often more severe than those associated with 
drought or flood events in isolation; the compounding effects of transi-
tions can increase the physical magnitude of resulting shocks as well 
as the odds that adaptive responses are overwhelmed by the rapid 
succession of opposing hydroclimate extremes across a wide range of 
geographies. During the winter of 2022–2023, for example, a prolonged 
sequence of heavy precipitation events following several years of severe 
drought and wildfires in California led to extensive infrastructure and 
property damage from widespread flooding and hundreds of shallow 
landslides, culminating in disaster declarations in 40 of the state’s  
58 counties; in a single 3-week period, nine consecutive atmospheric 
river storms dropped record-breaking precipitation, and; seasonal 
accumulations were ultimately the greatest on record in central por-
tions of the state. In East Africa, torrential rains during the 2023 autumn 
harvest season followed five consecutive seasons of drought between 
2020 and 2023 (which itself brought food insecurity to over 20 million 
people), destroying thousands of hectares of crops and displacing 
more than 2 million people from their homes.

Hydroclimate volatility is also anticipated to increase beyond 
historical baselines in a warming climate. This increase stems, in part, 
from the longstanding expectation that underlying precipitation and 
evaporation extremes will themselves intensify owing to the fundamen-
tal thermodynamics of a warming atmosphere22,23. Existing projections 
of potential future hydroclimate volatility are stark: in a moderate 
emission scenario, hydrologically intense years are projected to tri-
ple in major global river basins5; in a high warming scenario, extreme 
dry-to-wet transitions could quintuple over global land areas8. Given 
the considerable socio-environmental impacts of such rapid transi-
tions, better characterization of any changes — in particular, differenti-
ating higher-confidence trends at global scales from lower-confidence 
trends at regional scales (including the identification of locations where 
volatility hotspots overlap with high societal vulnerability) — is neces-
sary to inform effective and equitable adaptation options in the longer 
term. Meanwhile, improved understanding of the underlying atmos-
pheric processes would further enhance prediction of acute episodes, 
allowing for more proactive emergency planning and response.
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calculated using ERA5 atmospheric reanalysis39 and the NOAA-CIRES-
DOE 20CRv3 reanalysis (hereafter NCD20C)40, and projected whiplash 
is calculated using the Community Earth System Model Version 2 Large 
Ensemble Experiment (CESM2-LE)41.

Trends in historical hydroclimate volatility
There is substantial and growing evidence that global hydroclimate 
volatility, defined and quantified in multiple ways, increased over the 
historical period. These increases are also evident when considering 
hydroclimate whiplash as specifically defined here (Fig. 2 and Supple-
mentary Fig. 1). For example, over 1975–2015, the global subseasonal 
hydroclimate whiplash frequency increased by 31% (0.05 events per 
year per decade), 66.4% (0.06 events per year per decade) and 11% (0.01 
events per year per decade) for ERA5, NCD20C and CESM2, respectively 

(Fig. 2a). Whiplash changes over land area are slightly smaller, totalling 
16.5%, 49.4% and 17.2% for ERA5, NCD20C and CESM2, respectively. Like-
wise, global interannual whiplash increased by 7.6% (0.02 events per year 
per decade), 31.3% (0.03 events per year per decade) and 3.8% (0.003 
events per year per decade) for ERA5, NCD20C and CESM2, respectively 
(Fig. 2c), and the changes over land area were −3%, +21.9% and +7.6%. 
The magnitude of historical changes thus exhibits marked dataset 
dependency, with indications that observed changes might be outpac-
ing model-based expectations (Fig. 2a,c). Indeed, observed trends are 
stronger than simulated median trends for both subseasonal (Fig. 2a) 
and interannual (Fig. 2c) whiplash, with the magnitude of globally aver-
aged observed subseasonal trends (+0.05 events per year per decade) 
falling above the CESM2-LE ensemble spread of simulated trends (−0.01 
to +0.038 events per year per decade) in ERA5 and NCD20C (Fig. 2a).
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Fig. 1 | Global hydroclimate whiplash events. Location, date and impacts of 
select hydroclimate whiplash events from 2016 to 2023, and the corresponding 
magnitude of changes in the Standardized Precipitation Evapotranspiration 
Index (SPEI; shading). The brown shades represent wet-to-dry events and 
green shades dry-to-wet events. The events do not represent a comprehensive 

catalogue of all whiplash events but are illustrative of the breadth and diversity 
of geographies subject to such rapid transitions. Societally and ecologically 
consequential hydroclimate whiplash events can occur in virtually all land areas 
globally, and their impacts can be strongly affected by the direction of change 
(from wet to dry or dry to wet).
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Although it is clear that the overall global frequency of hydrocli-
mate whiplash events has increased, there remains considerable uncer-
tainty regarding the spatial pattern and magnitude of these changes. 
The spatial patterns vary markedly between reanalysis datasets and 
model simulations (Supplementary Fig. 1). A substantial portion of this 
apparent mismatch can probably be attributed to the degree to which 
each dataset captures the underlining anthropogenic forcing: ERA5 
and NCD20C each represent a single representation of all plausible 
sequences of historical whiplash events (incorporating substantial 
statistical noise from internal variability in addition to the anthropo-
genic warming signal), whereas CESM2-LE represents the ensemble 
average across 100 members, smoothing out simulated internal vari-
ability and potentially yielding a more reliable estimate of the forced 

response42. Meanwhile, genuine observational uncertainties and dif-
ferences in data assimilation schemes probably explain differences 
between ERA5 and NCD20C. For these reasons, CESM2-LE projections 
(Fig. 2b,d) might offer a more statistically robust depiction of spatial 
patterns expected from historical forcings. Projected whiplash trends 
are generally greater in magnitude for subseasonal (Fig. 2b) than for 
interannual (Fig. 2c) whiplash, although the spatial pattern is similar 
and is characterized by strong increases across most of northern Africa, 
the Middle East, South Asia, northern Eurasia, the tropical Pacific 
and the tropical Atlantic; modest decreases are apparently across 
the subtropical North and South Atlantic, northern South America, 
southern Africa, portions of southeastern Asia and a portion of the 
subtropical North Pacific.
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Fig. 2 | Historical hydroclimate whiplash frequency trends. a, A time series 
of global weighted-average historical subseasonal hydroclimate whiplash 
(3-month Standardized Precipitation Evapotranspiration Index (SPEI) with large 
transitions within a 3-month period) frequency in the CESM2-LE41 (blue), ERA5 
(ref. 39) (black) and NCD20C40 (red) reanalyses. The CESM2-LE time series reflects 
‘historical’ anthropogenic plus natural forcings to 2014 and SSP 3-7.0 forcing 
thereafter, with the solid blue line representing the median and the shading 
the full ensemble spread. The box-and-whisker plots to the right depict the 
distribution of decadal whiplash trends of each ensemble member in CESM2-LE 

from 1975 to 2015 and the corresponding trends for ERA5 and NCD20C. The box 
depicts the interquartile spread, the whiskers the 5th to 95th percentile spread 
and the blue circles the maximum and minimum trends. Dec, decade. b, Linear 
trends in subseasonal hydroclimate whiplash frequency over 1940–2023 in 
CESM2-LE. c, As in a, but for interannual whiplash (12-month SPEI with substantial 
transitions within a 12-month period). d, As in b, but for interannual whiplash. 
Climate model ensemble simulations and atmospheric reanalysis suggest that 
global hydroclimate whiplash probably increased between 1940 and 2023, 
particularly for subseasonal whiplash, but with substantial spatial heterogeneity.
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These findings of enhanced hydroclimate whiplash are consistent 
with broader evidence of rising hydroclimate volatility from various 
datasets, time periods and metrics. On the supply side, daily precipi-
tation variability increased at most observation sites16, with the trend 
accelerating over time and being most prominent in Europe, Australia 
and eastern North America43, while global average daily precipitation 
variability increased by 14% between 1900 and 2020 (ref. 43). Subsea-
sonal precipitation-based metrics additionally indicate increases in 
observed global land-only hydroclimate volatility between 1979 and 
2019, consistent with a projected time of emergence — that is, the time 
at which anthropogenic signals emerge above background natural  
variability — estimated at ~2017 over land15 by climate model large 
ensembles. Further evidence of changing historical volatility at regional 
to continental scales comes from integrated measures of precipitation 
intensity and dry spell length2, and also locally from tree-ring-based 
palaeoclimate reconstructions of precipitation, streamflow and snow 
water in California, which suggest that twentieth-century increases 
in variability are probably unprecedented in a multi-centennial 
(~600 year) context4.

Combined supply and demand metrics, as well as those directly 
examining compound hydroclimatic transitions, also reveal rising 
volatility. For example, the surplus deficit intensity index (an aggregate 
measure of variation in atmospheric water supply and demand) sug-
gests that global terrestrial hydrological intensity increased by approxi-
mately half a standard deviation unit between 1979 and 2017 (ref. 1). 
Likewise, analysis of the Palmer Drought Severity Index demonstrates 
increasing geographically remote but temporally coincident wet and 
dry extremes between 1950 and 2014 (ref. 24), and analysis of terrestrial 
water storage anomalies using observations from gravity-monitoring 
satellites reveals widespread intensity increases between 2002 and 
2021 (ref. 44). The frequency and/or intensity of transitions between 
wet and dry conditions have also risen over the historical period. For 
instance, a soil-moisture-based metric demonstrates robust global 
increases in rapid drought and pluvial transitions between 1980 and 
2022 (ref. 9), coincident with rising intraseasonal compound wet to 
warm and dry events in Asia over 1979–2014 (ref. 11).

Trends in projected hydroclimate volatility
Consistent with theoretical expectations45, there is strong consensus 
that historical increases in hydroclimate volatility will continue with 
ongoing anthropogenic warming. These changes are projected to be 
larger over land areas compared with the ocean, with their magnitude 
exhibiting strong dependency on the degree of anthropogenic warming 
(Fig. 3). For example, over land areas, globally averaged subseasonal 
hydroclimate whiplash frequency increases 19% (from 0.1 to 0.12 events 
per year), 113% (from 0.1 to 0.2 events per year) and 266% (from 0.1 to 0.4 
events per year) for 1 °C, 3 °C and 5 °C warming, respectively, relative 
to the 1940–1980 reference (Fig. 3a). The magnitude of subseasonal 
whiplash increases is smaller over ocean areas, reaching 9.3% (from 0.2 
to 0.22 events per year), 62.7% (from 0.2 to 0.33 events per year) and 
143% (from 0.2 to 0.49 events per year) at 1 °C, 3 °C and 5 °C warming, 
respectively (Fig. 3a). Spatially, these subseasonal whiplash increases 
are nearly ubiquitous over the globe by ~3 °C of warming (Fig. 3b); mod-
est negative trends (generally ≤25%) are projected only for portions of 
land areas in southern Africa and central Chile, as well as slightly larger 
decreases over subtropical portions of the Atlantic and Pacific oceans. 
These increases are generally largest in absolute terms, represent-
ing a frequency increase of 150% or more at high latitudes (especially 
northern Eurasia and Canada) and the deep tropical Pacific and Atlantic 

ocean basins near the Intertropical Convergence Zone, with additional 
regional maxima over land in a broad swath extending from northern 
Africa across the Arabian Peninsula into South Asia and the adjacent 
Tibetan Plateau14,15 (Fig. 3b).

Interannual hydroclimate whiplash generally exhibits similar 
changes to subseasonal, but with a lower magnitude18. Indeed, interan-
nual increases over land are 12% (from 0.1 to 0.11 events per year) at 1 °C 
warming, 52% (from 0.1 to 0.15 events per year) at 3 °C warming and 91% 
(from 0.1 to 0.2 events per year) at 5 °C warming (Fig. 3c). Increases over 
ocean areas are lower still at 7%, 34% and 57% at 1 °C, 3 °C and 5 °C warm-
ing, respectively (Fig. 3c). The spatial pattern of these changes largely 
mimics those of subseasonal whiplash (Fig. 3d), although with less pro-
nounced and more evenly distributed maxima (increases of 50–100%) 
broadly across the tropics, Arctic, north Africa and South Asia. How-
ever, the area of negative trends for interannual whiplash is broader, 
covering a larger portion of the subtropical North and South Atlantic, 
South Pacific and southern Africa, and expanding to encompass a 
portion of the subtropical North Pacific. For both interannual and sub-
seasonal whiplash, the contribution of precipitation changes alone is 
similar across oceanic and continental regions (Supplementary Fig. 2), 
but potential evapotranspiration amplifies increases over continents, 
particularly at high latitudes and across North Africa and the Mid-
dle East (Supplementary Fig. 3). These increases are not detected in 
precipitation-only metrics15,18,46.

These projections are consistent with abundant evidence docu-
menting broader volatility with warming, as represented using vari-
ous hydroclimate intensity or whiplash (or whiplash-like) measures. 
Multiple metrics and climate model ensembles indicate hydroclimate 
intensification1,3 and increasing precipitation variability16–18 over the 
twenty-first century. Indeed, precipitation variability is expected to 
increase by 3–4% per °C globally and 4–5% per °C over land16, with the 
magnitude of contributions from multi-day timescales thought to be 
larger than that from multi-annual timescales17,18. Projected increases 
in whiplash or event-to-event variability lend further support. For 
example, at the regional scale, overall increases in both wet and dry 
years47, as well as 25–100% increases in extreme interannual cool season 
precipitation whiplash transitions and 35–85% increases in seasonal 
sharpness (the ratio of total annual precipitation falling during the 
peak winter wet season versus the autumn and spring shoulder sea-
sons), are projected for California by the late twenty-first century 
under a high warming scenario13; these changes are in line with further 
estimates of a broader 25–60% increase in frequency and 30–100% 
increase in intensity of interannual precipitation whiplash (using a 
similar definition) across semi-arid hotspot regions (including the  
Mediterranean Basin, western Australia and southwestern USA) by  
the late twenty-first century14. In a more temperate climate setting, 
regional increases in lagged compound wet and dry spells12 are pro-
jected in the northwestern USA and southwestern Canada. At the global 
scale, 60% of land area is projected to experience accelerated transitions 
between dry and wet periods under a high warming scenario7. The mag-
nitude of these changes depends on the metric, method and warming 
scenario, but there are suggestions of 2.5× increases in globally averaged 
subseasonal precipitation whiplash15 and 5× increases in interannual 
dry-to-wet events over global land areas compared with the historical 
period8. Additionally, hydrologically intense years are further projected  
to triple in major global river basins even under moderate warming5.

Several regions have emerged as having regional hydroclimate vol-
atility responses that deviate substantially from the global mean. Gen-
erally, the high latitudes (Arctic and Antarctic, plus northern Eurasia) 
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and deep tropics (near the Intertropical Convergence Zone) over the 
Pacific and Atlantic basins exhibit rates greater than the global mean, 
whereas subtropical regions (particularly over the Pacific and Atlantic 
basins and small portions of adjacent land over parts of coastal Chile 
and southwestern Africa as well as the Mediterranean Sea) exhibit rates 
lower than — or even of the opposite sign from — the global mean6,7,14,15 
(Fig. 3a,c). When specifically considering precipitation-only volatility 
on interannual timescales, the largest regional increases in climatologi-
cal transition zones occur just poleward of the subtropics in both hemi-
spheres (including the southwestern USA and California13, southern 
and western Australia, southeastern Africa, the northern and eastern 
Mediterranean Basin and portions of central Europe14), resulting from 
locally amplified precipitation variability near boundaries separating 
regions of robust mean drying in the subtropics (caused primarily by 
storm track shifts related to the expanding Hadley cell48) and robust 

mean wetting in the extratropics (caused by both storm track shifts 
and thermodynamic effects49,50).

Thus, hydroclimate whiplash is projected to increase in most 
global regions in a manner that scales with rising global mean tem-
perature. These whiplash changes are likely to be larger in magni-
tude over land compared with ocean given that evaporative demand 
extremes can be greatly amplified via land-surface/soil-moisture 
feedbacks31,51,52, and also to have greater impacts given the sensitiv-
ity of human systems and the terrestrial biosphere to extremes in 
freshwater availability5,53.

Mechanisms underpinning hydroclimate volatility
There is strong consensus that changes in hydroclimate volatility are 
fundamentally driven by thermodynamic processes at global scales. At 
regional scales, however, other factors become important, including 
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Fig. 3 | Projected hydroclimate whiplash trends in a warming climate. 
a, The frequency of global weighted-average subseasonal (up to 3 months) 
hydroclimate whiplash events in the CESM2-LE41 as a function of projected 
global average temperature change. The solid lines represent the median and 
shaded areas the 5th to 95th percentile ensemble spread. b, The projected 
trends in subseasonal hydroclimate whiplash in CESM2-LE at 3 °C global mean 

warming. c, As in a, but for interannual (up to 12 months) whiplash; note the 
different y-axis scale. d, As in b, but for interannual whiplash. All global mean 
temperature increases are calculated relative to the 1940–1980 reference period. 
Hydroclimate whiplash increases strongly with warming over nearly all global 
land areas and most global ocean areas outside of the subtropics.
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changes in atmospheric circulation (partly explaining the differences 
between observed and projected spatial whiplash trends; cf. Fig. 1a,b 
and Supplementary Fig. 1). The drivers of such volatility changes are 
now discussed, as are key differences between the causes of hydro-
climate whiplash (defined with respect to the atmosphere) versus 
hydrologic whiplash (defined with respect to the land surface).

Thermodynamics dominate, dynamics modulate
In a hydroclimate context, thermodynamic effects broadly describe the 
direct impacts of increased temperature upon actual and/or potential 
atmospheric water vapour. Fundamental thermodynamics dictate 
that the saturation vapour pressure of air with respect to water — and, 
therefore, the water-vapour-holding capacity of the atmosphere —  
must increase with rising temperatures, as encapsulated by the 
Clausius–Clapeyron (CC) equation, which predicts an exponential 
scaling rate of ~7% per °C (refs. 54,55). Observed increases in verti-
cally integrated (column) atmospheric moisture content are gener-
ally in line with these expectations56, and are directly attributed to 
greenhouse-gas-driven warming57. This ‘thermodynamic compo-
nent’58,59 of climate change — that is, nonlinear increases in the water 
holding and water evaporating potential of the atmosphere — yields 
corresponding increases in extreme precipitation60 and potential 
evapotranspiration (as reflected using the analogy of an expanding 
atmospheric sponge; Box 1).

While thermodynamically driven increases in extreme precipita-
tion events have been widely recognized60, a smaller but rapidly grow-
ing body of research has focused on the drivers61–65 and impacts30,46,66 of 
increasing evaporative demand. One consequence of the exponential 
increase in saturation vapour pressure is a concurrent increase in the 
VPD — the difference between the theoretical maximum and actual 

ambient absolute humidity. Importantly, VPD increases nonlinearly 
with temperature even under the assumption of constant relative 
humidity (RH), meaning that rising temperatures alone are sufficient 
to drive rapid increases in VPD even without changes in the fractional 
saturation of the air (Fig. 4). Higher VPD yields an increase in the evapo-
rative demand of the air (that is, its potential to drive evapotranspira-
tion from the land surface, bodies of water and living plants52,67,68) 
such that actual evaporation increases if water is available; if water is 
not available, sensible heat flux and near-surface air temperature rise.

In line with these expectations, increases in mean and extreme VPD 
have been observed over global land areas68,69 and directly attributed 
to anthropogenic warming64,70. Extreme VPD values are expected to 
increase even faster than the seasonal mean over global land areas, a 
nonlinearity stemming from nearly equal contributions by the under-
lying thermodynamics and by increased temperature and moisture 
variability51. These increases in mean and extreme VPD have large con-
sequences for ecosystems68, drought35,46 and wildfire70,71 risks via faster 
and more intense soil drying31 and increasingly severe and persistent 
aridification of vegetation72. Indeed, rates of drought intensification 
increased over 75% of global land regions between 1948 and 2014, with a 
projected future trend towards more rapidly developing flash droughts 
on a high warming trajectory73. This amplified VPD-related continental 
drying is probably a key factor explaining faster projected hydrocli-
mate whiplash over land versus the ocean (Supplementary Fig. 3c,d), 
although this pattern is not yet apparent in observations (Supplemen-
tary Fig. 1), perhaps owing to increased cool El Niño–Southern Oscilla-
tion (ENSO) conditions in the late 20th and early 21st centuries74,75. The 
evidence that RH over a majority of global land areas will decrease62,65 
suggests that the already large projected increases in VPD under a 
constant RH assumption might well be conservative over the continents.

Box 1 | Clausius–Clapeyron and the expanding atmospheric sponge
 

The saturation vapour pressure of air with respect to water — 
commonly referred to as the water-vapour-holding capacity of 
the atmosphere — increases exponentially in response to a linear 
increase in temperature by around 7% per °C. This thermodynamic 
phenomenon — the Clausius–Clapeyron (CC) relation54,55 — is at 
the heart of the observed and projected acceleration of the global 
hydrologic cycle from anthropogenic warming. Indeed, one key 
implication is that the most extreme rates of precipitation and 
potential evapotranspiration will increase rapidly on a warming Earth, 
even in the absence of changes in RH and atmospheric circulation. 
Thus, extremes on both the wet (supply) and dry (demand) side of the 
hydroclimate spectrum can be amplified by the very same underlying 
thermodynamic process.

The physical processes underpinning increasing hydroclimate 
volatility in a warming climate can be visualized as an expanding 
atmospheric sponge. Consider a series of progressively larger 
kitchen sponges as representing the increasing water-vapour-holding 
capacity of the atmosphere as temperatures rise. These hypothetical 
sponges become 7% larger with each degree of warming, such that 
at 3 °C of warming, the atmospheric ‘sponge’ would be around 22.5% 
larger than at the pre-industrial temperature (see figure). In turn, the 
absorptive capacity of the sponges increases such that they can soak 
up more water from a damp countertop (analogous to increased 

evaporation over wet surfaces), as will their propensity to yield 
increasingly large volumes of water if wrung out with sufficient force 
(analogous to increasingly heavy downpours of precipitation when 
atmospheric conditions are otherwise conducive).

This analogy also holds in the event that water availability is a 
limiting factor: just as an initially dry kitchen sponge cannot soak 
up any water from a dry countertop nor subsequently yield water 
if wrung out, an exponential increase in the equilibrium vapour 
pressure of the atmosphere at saturation does not itself guarantee 
a correspondingly large increase in overall precipitation (which is 
radiatively constrained in the Earth’s climate system) nor increased 
rates of actual evapotranspiration in water-limited environments 
(such as deserts).

+3 °C
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Together, these thermodynamically driven increases in extreme 
precipitation and potential evapotranspiration probably explain the 
majority of globally averaged observed and projected changes in hydro-
climate volatility through their amplification of the supply side and 
demand side of the global water balance, respectively1,5. Moreover, 
they offer a compelling potential mechanism for nonlinear increases 
in hydroclimate volatility with warming (Fig. 3a,c) given their close 
association with well-understood underlying exponential processes.

These same thermodynamic effects also underpin most regional 
increases in hydroclimate volatility, but changes in atmospheric 
circulation76 (that is, dynamical effects) can substantially modify their 
influence locally. In general terms, dynamical changes amplify or off-
set large-scale thermodynamic increases in moisture by increasing 
or decreasing air convergence through modification of horizontal 
and/or vertical winds49 — occasionally to a degree that dominates the 
net local response77. Regions where projected increases in hydroclimate 
volatility are greater than the global average (including the Pacific and 
Atlantic Ocean deep tropics, North Africa, the Arabian Peninsula, South 
Asia, and much of northern Eurasia and Canada) generally encompass 
areas where dynamical effects reinforce moisture increases (Fig. 3b,d). 
Regions where volatility changes are less than the global average (or are 
even negative in sign, most notably in the oceanic subtropics broadly 
and also across far southern Africa) encompass areas where dynamical 
effects offset or even outweigh thermodynamics (Fig. 3b,d). In tropical 
ocean regions and some tropical or subtropical continental regions, 
the volatility enhancement by dynamical changes is probably related 
to strengthened vertical motion (updrafts) during intense convective 
storms49. In subtropical regions, the volatility reduction by dynamical 
changes is probably related to mean drying caused by poleward-shifted 
mid-latitude storm tracks48 (with volatility enhancement at high  
latitudes stemming from mean wetting via the same process).

Regional flavours of hydroclimate volatility — that is, whether 
changes are primarily caused by increases in extreme wet events, 
extreme dry events or both14 — often reflect the balance of thermo-
dynamic and dynamical changes in a particular location. Regional 

hotspots of increased twenty-first century volatility include 
wet-dominated increases across western North America4,13,14 (where 
dynamical changes reinforce thermodynamic changes), dry-dominated 
increases in the Mediterranean Basin14 (where dynamical changes 
counteract thermodynamic changes) and mixed wet–dry increases 
over southern Africa14 (where dynamical changes and thermodynamic 
changes are also mixed). When only precipitation changes are consid-
ered, most regions are anticipated to become wetter and more volatile 
with warming, except for subtropical regions (mainly over oceans)18. 
However, use of a metric that incorporates both precipitation and 
evaporative demand reveals a nearly universal global increase in vola-
tility over land that is dominated by increases in extreme wet events 
globally and in most subregions5, although increases in extreme dry 
events still contribute substantially and their relative contributions rise 
in accordance with evaporative demand in the twenty-first century1.

Changes in the strength or spatial patterns of geographically 
remote teleconnection patterns — which are often proximally respon-
sible for the onset of rapid hydroclimatic transitions46,78,79 — represent  
another dynamical mechanism influencing future frequency and/or 
intensity of hydroclimate volatility. Examples include the possible 
increase in the occurrence of extreme ENSO events80, the projected 
strengthening of hydroclimatic extremes associated with the 
Madden–Julian Oscillation (MJO)81 and the eastwards shift in associ-
ated modes of atmospheric circulation variability associated with both 
ENSO and MJO82,83. Although the MJO and ENSO are both inherently 
tropical phenomena, they are known to exert profound influences on 
regional to continental-scale climate84, and so changes in either their 
amplitude and/or the spatiotemporal characteristics of their respective 
teleconnections would probably have major implications for dynami-
cal contributions (at least episodically) to changes in hydroclimate 
volatility; however, exactly how these changes might manifest remains 
subject to considerable uncertainty85.

Thus, thermodynamic effects dominate, but dynamical effects 
modulate observed historical and projected future increases in global 
hydroclimate volatility14,43,49. The comparatively high magnitude and 
confidence in the sign and spatial pattern of thermodynamic changes 
in a warming climate86 overwhelms the comparatively lower magnitude 
(at global scales) and weaker scientific confidence (at subcontinental 
scales)77 in dynamical changes. Indeed, observed increases in volatility 
over global land areas are primarily caused by a combination of atmos-
pheric moistening and increased evaporative demand, as opposed to 
changes in atmospheric circulation43.

Divergence between extreme and non-extreme precipitation
Increasing divergence between trends in extreme and non-extreme 
precipitation caused by anthropogenic warming is probably a further 
contributor to broader increases in hydroclimate volatility. Globally 
widespread increases in extreme precipitation events have occurred 
in response to anthropogenic warming87,88, and both observations and 
projections indicate substantial acceleration in the magnitude and rela-
tive frequency of such events as a function of event magnitude16,23,89–91. In 
other words, the most intense precipitation events are likely to increase 
faster than more moderate events on a warming Earth, resulting in 
broadening of the upper tails of associated statistical distributions 
(increased positive skewness and/or kurtosis)91,92.

Several terms have been coined to qualitatively describe the 
amplified intensification of precipitation in the upper tail of its dis-
tribution. These include the ‘wet regions get wetter and dry regions 
drier’58 or ‘rich-get-richer’93 hypothesis, with suggestions that such a 
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generalization might be more accurate in temporal rather than spatial 
terms94; the ‘higher intensity, reduced frequency’ response of precipita-
tion to warming, highlighting the general tendency for light to moder-
ate precipitation to decrease in frequency but for heavy precipitation 
to increase3; and the ‘wet get more variable’ paradigm, suggesting 
that the propensity for increased precipitation volatility is greater in 
climatologically wet versus dry regions18.

This nonlinearity in the response of precipitation extremes can be 
attributed to multiple physical processes. Although thermodynamic 
increases in atmospheric water vapour saturation capacity of ~7% per 
°C (ref. 95) are associated with an increase in extreme precipitation 
of similar magnitude when averaged over space, time and precipita-
tion intensities96,97, global mean precipitation increases at a rate of 
only ~2–3% per °C owing to constraints set by the global atmospheric 
energy budget98. Such divergence leads to a compensating decrease in 
non-extreme precipitation that is nearly ubiquitous at all latitudes94, 
as confirmed in model simulations3 and observations23,99. In particular, 
there is a broad decrease in the frequency and intensity of light-to-
moderate precipitation, an increase in the overall number of dry days 
(>30 days per year over the Mediterranean and Amazon regions on a 
high warming trajectory, but no increase in polar regions100) and an 
increase in dry spell length in some regions, especially in the tropics 
and subtropics during the dry season101. Increases in the most intense 
precipitation events, which can themselves be partially self-amplifying 
via convective feedbacks in a warming climate102,103, might further 
accentuate this compensatory effect by subsequently stabilizing the 
atmospheric column through latent heat release22 and decreasing 
lighter precipitation events.

One consequence of this higher intensity, reduced frequency 
response3 is that the relative and absolute increase in precipitation 
extremes increases as a function of event intensity. Lesser extremes 
(95th percentile daily precipitation) increase at a rate slower (3% per 
°C) than growth in atmospheric water vapour (7% per °C), but rarer 
and higher magnitude extremes (99.9th percentile daily precipitation) 
increase at a rate near or even exceeding growth in water vapour (>7% 
per °C)104. Indeed, the most extreme precipitation events might be 
associated with super-CC increases in intensity, substantially exceeding 
7% per °C (ref. 103), especially when associated with shorter-duration 
(hourly to subhourly) convective extremes103,105 or the inner core of 
tropical cyclones106. Although there is not universal agreement on 
super-CC increases in all settings107, precipitation scaling as high as 14% 
per °C has been found in the tropics96 and the very highest magnitude 
events elsewhere102. The processes causing these super-CC increases 
vary according to the underlying precipitation-generating mode and 
storm characteristics, but increased moisture convergence stemming 
from regional shifts in atmospheric circulation89 or nonlinear effects 
related to the vertical profile of latent heat release by precipitation in 
clouds103 might be a major contributor.

Hydroclimate versus hydrological volatility
Although the meteorological drivers of hydroclimate volatility are rela-
tively well understood, the terrestrial drivers of hydrological volatility —  
which describes rapid transitions between dry and wet states of the 
land surface — can be distinct from their atmospheric counterparts. 
Whether hydroclimate volatility yields hydrological volatility depends 
on various factors such as underlying geography, geology, land use and 
antecedent hydrological conditions (including soil moisture, snow 
cover and groundwater)108,109. Therefore, land-surface processes can 
either weaken or intensify hydroclimatic whiplash events (for example, 

if soils are particularly dry or wet before an extreme precipitation event, 
reducing or amplifying flood risk, respectively), or even lead to hydro-
logical volatility in the absence of hydroclimatic whiplash (for exam-
ple, non-extreme precipitation co-occurring with heavy snowmelt, 
amplifying flood risk)110.

Less is known about the mechanisms of hydrological volatility 
compared with hydroclimate volatility. Climate change is already 
thought to be influencing antecedent soil moisture conditions relevant 
to hydrologic whiplash episodes, including the widespread global dry-
ing of root zone soil moisture111. Broad drying of shallow soil moisture 
might be expected to reduce the risk of smaller floods in a warming 
climate owing to increased soil water absorptive capacity. However, 
the risk of extreme floods is not expected to be reduced, and might 
increase because increasingly extreme precipitation events eventually 
overwhelm the mitigating influence of drier soils. This divergence can 
be viewed as a form of flood extremeness whiplash109,112,113 (Box 2). In 
specific regions where seasonal and/or regional trends are towards 
wetter antecedent conditions, flood magnitudes will increase at an 
even faster rate than precipitation extremes owing to the synergistic 
effect of saturated antecedent soil conditions and faster and/or earlier 
snowmelt110,114. Opposing changes at opposite ends of this spectrum 
emerge in hydrological projections for California, for instance — where 
anthropogenic warming results in changes of opposite sign in the upper 
and lower tails of the run-off distribution despite little change in mean 
streamflow — owing to increases in winter run-off that occur despite 
run-off declines in all other seasons92.

Cascading societal and ecological impacts of 
hydroclimate volatility
Given the observed historical impacts of hydroclimate whiplash events, 
and the strong consensus that they will increase in frequency and ampli-
tude in a warming climate and that societal and ecological responses 
to increasingly wide swings between extreme dry and wet conditions 
are probably nonlinear, there is an urgent need to understand and plan 
for such volatility changes. The impacts of hydroclimate volatility and 
possible adaptation options are now discussed.

Consequences for natural and human systems
Increases in hydroclimate volatility have the potential to impact 
various socio-environmental systems. For instance, rapid transitions 
between extreme wet and extreme dry can impact water quality via 
harmful algal blooms115 (when hot and dry conditions follow a burst 
of nutrient-rich run-off into a reservoir during heavy rains)116 or the 
influx of excess organic and/or mineral content (when heavy rains 
following severe drought and/or elevated wildfire activity wash silt, 
ash or woody debris into bodies of water)117. This degradation has 
resulting influences on freshwater ecosystems and water security. 
Hydroclimate volatility also has a bearing on food security through 
decreased plant productivity118,119, crop failures120, damage to agricul-
tural land or displacement of agricultural workers121, livestock mor-
tality or decreased grazing viability122, access disruptions123 and pest 
outbreaks124. Rapid hydrological shifts further present a public health 
threat when hydroclimate volatility brings about population surges in 
potential disease vectors such as rodents or mosquitoes125, or increases 
in pathogen-specific overlap of favourable temperature and moisture 
conditions126; when water sources become overly concentrated and/or 
contaminated during very low or very high run-off conditions (elevating 
the risk of water borne diseases127); or when the life cycle of soil-borne 
fungal pathogens depends on the alternation between wet soils for 
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growth and later transition to dry soil conditions for aerosolization128. 
Geophysical effects such as landslides129 and cracking of clay-rich soils 
from expansion and contraction might also occur, in turn potentially 
damaging buildings and water and transportation infrastructure130,131.

Hydroclimate volatility can also yield geophysical and societal 
effects that are distinct from and/or greater in magnitude than those 
associated with isolated flood and drought events (Fig. 5). For instance, 
extreme wet-to-dry transitions can amplify wildfire risk by allowing 
increased rates of plant growth and ecosystem biomass accumula-
tion to be immediately followed by rapid drying of flammable veg-
etation, increasing the potential intensity of subsequent fire events 
via increased fuel loading21, especially in non-forested landscapes132. 
Extreme dry-to-wet transitions, in contrast, can result in increased risk 
of hydrological hazards (including flash floods and debris flows133,134) 
owing to increased run-off intensity caused by elevated hydrophobic-
ity of soils and/or modification of vegetated land cover resulting from 
antecedent drought stress135 or wildfires136,137.

Thus, increasingly rapid and large transitions between extreme 
wet and dry states are likely to challenge not only water and flood 
management infrastructure5,138–140, but also disaster management141, 
emergency response134 and public health systems142 that are designed 
for twentieth-century extremes. Indeed, increases in hydroclimate 
volatility have the potential to adversely affect climate adaptation 
efforts. If, for instance, a governmental entity were to predicate future 
water and flood management primarily upon projected trends in annual 
mean precipitation in a region such as California — where such trends 
are projected to be small and/or uncertain in sign143 — there might be 
considerable risk of choosing policies and designing infrastructure that 
would ultimately prove to be inadequate144 to cope with large projected 
increases in drought, flood and hydroclimate whiplash events13,14,92. 
Similarly, the tendency for the most extreme but least frequently 
observed precipitation and subsequent flood events to increase at a 
faster rate than smaller but more commonly observed events might 
skew public perceptions in a manner inconsistent with actual shifts 
in natural hazard risk113. Not accounting for such volatility raises the 

possibility of costly climate maladaptations, whereby individuals, gov-
ernments and societies focus too narrowly on a single hazard (droughts 
at the expense of floods, for instance) and/or are unprepared for the 
potential impacts of compounding extremes145.

Managing risks of increasing hydroclimate volatility
Given the observed and potential future impacts from hydroclimate 
volatility, adaptation and mitigation efforts are necessary as existing 
infrastructure and resource management systems could increasingly 
be pushed beyond design limits5. Successful adaptation will probably 
require a variety of approaches to co-manage the risks of flood and 
drought — a large departure from historical norms wherein water over-
abundance and scarcity were most often managed as separate hazards. 
Maintaining excessively high reservoir water levels to mitigate drought 
risk, for instance, could amplify flood risk by rendering the dam struc-
ture more vulnerable to overtopping and potential structural damage 
during subsequent heavy inflows141. Conversely, aggressive channeli-
zation of rivers for flood control purposes can inhibit groundwater 
recharge in natural floodplains that might be used as a water source 
during subsequent droughts141.

A number of interventions capable of accommodating increased 
hydroclimate volatility have, therefore, been proposed and, in some 
cases, implemented. A common theme across such interventions 
is flexibility — systems must be able to accommodate a wide range 
of rapidly changing hydroclimate and hydrological states without 
compromising their ability to function effectively. One example is 
floodplain expansion and reconnection, which allows floodwater 
to spread over a wider area, reducing risks to population centres 
and critical infrastructure146. This nature-based adaptation has the 
additional potential benefits of mitigating future drought risk and 
improving water system sustainability via enhanced groundwater 
recharge, as well as improving riverine and wetland habitats147. More 
technology-intensive interventions include forecast-informed res-
ervoir operations (in which dams are operated in close consultation 
with meteorologists to use short-term weather forecasts to maximize 

Box 2 | Resolving the extreme precipitation–flood paradox
 

There is a strong expectation that precipitation extremes will increase 
with anthropogenic warming60,189,190, and compelling evidence 
that they have already done so88,191–193. Yet the evidence base for 
systematic increases in flooding is weaker194,195, with suggestions 
that the overall frequency of floods has decreased regionally196,197, 
although with considerable spatial variation195. This counterintuitive 
observation describes the extreme precipitation-flood paradox198.

To explain this paradox, flood responses to warming have been 
examined along a spectrum of intensity — essentially asking whether 
very large (and therefore rarely observed199) floods might change 
differently from smaller, more commonly observed events. In doing 
so, a more nuanced picture emerges: whereas smaller and more 
frequently observed floods exhibit geographically mixed increasing 
and decreasing trends195, initial indications suggest that the most 
extreme and rarely observed floods might be increasing200, although 
with substantial uncertainty given the presence of confounding 
factors that vary geographically and by climate zone194,195. Targeted 
analyses that span the full spectrum of flood intensity113 or focused 
specifically on large, rarer floods200, or that leverage large ensemble 

modelling experiments109 and palaeoclimate data112 to increase the 
effective sample size of flood events, have helped to demonstrate this 
counterintuitive effect.

This predicted and observed divergence in the direction of 
change in flood magnitudes across their intensity spectrum can 
ultimately be explained by differences in the relative importance 
of different flood generation processes195. Moderate floods with 
short recurrence intervals are strongly influenced by changes in 
land-surface conditions (such as soil moisture and snowmelt), 
whereas extreme floods with long recurrence intervals are more 
directly influenced by the magnitude of extreme precipitation 
events200,201, which tend to overwhelm the otherwise mitigating 
influence of soil drying in a warming climate109,201. These findings 
raise the prospect that increasing hydroclimate volatility will 
subsequently lead to increased hydrological volatility in the form 
of fewer small floods (which often bring ecological net benefits), 
but more frequent extreme floods (which tend to be the most 
destructive and harmful events) — an outcome termed the ‘worst of 
both worlds’ scenario200.
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water storage without increasing subsequent flood risk148), as well as 
the development of sponge cities designed to decrease the fraction of 
impervious surfaces to increase infiltration of precipitation into the 
soil column, yielding the dual benefits of decreased pluvial flood risk 
and increased aquifer recharge149.

Summary and future perspectives
When antecedent land-surface and hydrological conditions are 
otherwise favourable, sharp swings between extremely dry and wet 
hydroclimatic conditions often give rise to disruptively sudden tran-
sitions between drought and flood. Such hydroclimate volatility is 
already observed to have increased globally, especially at subseasonal 
timescales, and at a rate faster than projected by coarse-resolution 
climate models (although specific regional trends are less clear histori-
cally owing to observational uncertainty). Hydroclimatic volatility is 
anticipated to further increase in magnitude (by ~130% and ~50% over 
land areas, respectively, for subseasonal and interannual whiplash 
at 3 °C warming above pre-industrial temperature), and to emerge 
robustly in additional regions as a consequence of anthropogenic 
climate change. The largest increases are projected to occur across 
the Northern Hemisphere high latitudes, the Pacific and Atlantic tropi-
cal oceans, and in a broad swath extending eastward from northern 
Africa, across the Arabian Peninsula and into portions of South Asia. 
Such increases arise primarily from well-understood thermodynamic 
properties of a warming atmosphere, which dictate an exponential rise 
in the water-vapour-holding capacity that raises the ceiling on both 
extreme precipitation and extreme evapotranspiration. There is also 
potential for additional contributions from changes in the atmos-
pheric circulation, although these are regionally variable and more 
uncertain. Yet despite confidence that hydroclimate volatility has 
increased — across a variety of metrics — there remain many limitations 
or gaps in understanding.

The lack of a uniform definition of hydroclimate volatility is one 
such challenge. So far, ad hoc, application-specific definitions have 
been used to capture the magnitude, rate of change and/or frequency 
of transitions between wet and dry states, with some considering pre-
cipitation and others encompassing precipitation and evaporative 
demand. In envisioning a globally generalizable unifying metric, the SPEI 
was selected here as the underlying variable for hydroclimate whiplash 
owing to its ability to capture dry and wet extremes, to  capture both pre-
cipitation and evaporative demand, and to characterize hydroclimate 
volatility at the timescales that are most broadly relevant to societal and 
ecological hazards. However, this metric still has limitations that future 
metrics could address, namely consideration of: additional character-
istics, such as severity, duration, seasonality or affected area; the ‘fla-
vours’ of whiplash, such as precipitation dominated versus evaporative 
demand dominated, or hydroclimatic versus hydrologic; the inherent 
spatiotemporal asymmetry between extreme wet and dry events, as well 
as the possibility that the spatiotemporal dependence between them 
can itself change; and extremes derived more directly from hydrological 
and land-surface variables such as run-off and soil moisture.

The offset between the magnitude of observed and modelled 
trends also highlights a key issue of concern. Notably, observed histori-
cal increases in global-scale hydroclimate whiplash are near or above 
the upper end of projected conditions from the 100-member CESM2-LE  
(Fig. 2a,c). The possible explanations for this difference highlight 
several distinct future research directions. First, it is possible that the 
Earth experienced an ‘unlikely’ iteration of natural variability during  
the observational period150, either related to ENSO or some other internal  

mode of variability75, temporarily accelerating anthropogenically 
forced whiplash trends; ongoing efforts to improve understanding of 
the global sea surface temperature pattern effect150 and reduce biases in 
tropical Pacific sea surface temperature gradients151, especially through 
the use of high-resolution (mesoscale eddy-resolving) ocean and/or 
atmospheric models152, might offer a clearer picture. Second, to disen-
tangle observational uncertainty surrounding precipitation extremes 
and atmospheric evaporative demand from true divergence from 
predictions, efforts to expand historically sparse and/or discontinu-
ous observational networks153,154 and improve data assimilation and/or 
modelling frameworks used in global atmospheric reanalyses155 will be 
required. Third, existing Earth system models might directly underes-
timate the anthropogenically forced rate of change in the wet and dry 
extremes that underpin hydroclimate volatility; improved representa-
tion of very high-intensity, short-duration precipitation extremes156 
using high-resolution102 (especially convection-resolving156) atmos-
pheric models, and of the Earth system processes (including plant water 
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Fig. 5 | Cascading hydroclimate whiplash hazards in a warming climate.  
The pathways through which hydrological extremes and rapid whiplash 
transitions between wet and dry states can lead to complex effects in the  
broader Earth system. The dark arrows represent cascading relationships  
(in which the initial event causes indirect but substantial downstream effects 
via an intermediate step or process), and the red vertical arrows show increases 
or decreases in specific impacts under anthropogenic warming. The processes 
labelled in blue represent effects caused by wet events alone, those labelled  
in yellow represent those caused by dry events alone and processes labelled in  
grey represent those specifically caused by rapid whiplash transitions. 
Together, natural variability and anthropogenic climate change contribute to 
meteorological extremes that can cause hydroclimate whiplash events — with 
subsequent cascading and wide-ranging impacts that are often distinct from wet 
or dry extremes occurring in isolation.
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use, soil moisture and evapotranspiration157) related to decreasing 
specific and RH over continents158 will also be critical.

Moreover, despite high confidence in the sign of future trends in 
global-scale hydroclimate whiplash, substantial uncertainties remain 
with respect to their magnitude and spatial pattern. These uncertain-
ties arise from broader uncertainties surrounding changes to mean and 
extreme states of atmospheric circulation, including the persistence of 
atmospheric Rossby waves159,160 capable of producing long-duration pre-
cipitation and temperature extremes161, accelerated land-surface feed-
backs during extreme heatwaves162–165, emergent tipping points in the 
vegetated biosphere166–168 and non-stationarity in ENSO and its global 
hydroclimate teleconnections80,82,169. Uncertainty surrounding ENSO, in 
particular, is the subject of intensifying debate as observed multidecadal 
trends increasingly conflict with climate model projections74,75, raising 
the question of whether projected trends in regional hydroclimate are 
realistic and/or whether future forced trends might be non-monotonic151.

Future research across many sectors of climate and Earth system 
science will contribute to resolving these uncertainties. At a large scale, 
constraining overall global trends in volatility requires narrowing the 
plausible range of future anthropogenic emission trajectories170 and 
associated planetary warming171. At a regional scale, understanding 
the patterns and magnitudes of volatility trends will require meth-
odological advances to examine changes in atmosphere–ocean vari-
ability, atmospheric circulation (including those caused by evolving 
aerosol forcings172,173), extreme local storm and subsequent precipi-
tation events103,156,174, and feedbacks in the coupled land–biosphere–
atmosphere system. These advances could be achieved through 
both traditional physics-based modelling and emerging machine 
learning-based methods175–177. For the latter, although the near-term 
prospects for improving multidecadal climate projections and extreme 
event prediction are potentially transformational178, they remain highly 
uncertain179. In addition, measurements of atmospheric and land-surface 
variables relevant to hydroclimate volatility can be improved through 
new remote sensing efforts (for example, the NASA SWOT mission)180, 
by increasing the resolution and coverage of historical observations 
through advanced statistical and machine learning interpolation 
methods181, and by reducing uncertainties in reanalysis products. Addi-
tional efforts to couple climate models with hydraulic, dynamic vegeta-
tion and/or epidemiological models will offer further insight into the 
relationship between hydroclimate volatility and its potential impacts, 
including hydrological drought-to-flood transitions, wildfire risk and 
disease outbreaks. These efforts will require interdisciplinary collabora-
tion across domains ranging from civil engineering to urban policy and 
planning to public health, some of which are already underway182,183.

Large-ensemble climate modelling experiments are vital for 
quantifying anthropogenically forced trends in complex atmos-
pheric phenomena that drive hydroclimate volatility. Owing to the 
relative rarity of such events in historical observations and individual 
climate model realizations, detecting meaningful and statistically 
robust trends in the context of annual-to-decadal climate variability 
can be challenging42. Large ensembles of at least several dozens of 
members run for multiple decades of model-years are often neces-
sary to robustly quantify the probability of statistically rare events17, 
even in the context of strong external forcing. Expanding existing 
single-model initial condition ensembles to encompass additional 
dimensions of uncertainty — including parameterizations related 
to clouds, precipitation and land–atmosphere coupling, as well as 
a wider range of global and regional anthropogenic and natural cli-
mate forcing scenarios184 — will improve understanding of global 

hydroclimate volatility. Likewise, generating large ensembles with 
sufficiently granular spatial resolution to adequately represent phe-
nomena such as convective precipitation and persistent (blocking) 
high-pressure systems remains a notable frontier partly owing to 
computational constraints185, but might yield large advances in under-
standing and predicting volatility-relevant extreme events156,174. The 
need for large ensemble frameworks also extends to observational 
datasets186 owing to both persistent spatiotemporal inhomogeneities 
in observation-sparse regions187 and differences in representation in 
the precipitation and evapotranspiration-related processes under-
pinning whiplash events that can yield notable differences between 
datasets (Fig. 2 and Supplementary Fig. 1).

Finally, as increases in hydroclimate volatility will have important 
and widespread consequences, there is an urgent need for disaster 
management, emergency preparedness, and infrastructure design and  
operations to incorporate the intensifying risks of compound and cas
cading impacts. Doing so is necessary to better respond to acute emer-
gencies and to effectively allocate finite climate adaptation resources. 
This urgency is especially great in central and northern Africa, the 
Middle East and South Asia given the triple confluence of large pro-
jected increases in whiplash (Fig. 3), very high population exposure and 
underlying socioeconomic factors that increase vulnerability in these 
regions. Improved understanding of the character, causes and con-
sequences of hydroclimate volatility is thus integral to efforts aimed 
at managing and reducing the risks of intensifying climate change 
impacts on a warming Earth.

Data availability
All ERA5 data are publicly available via https://cds.climate.coperni-
cus.eu. NCD20C data are available via https://rda.ucar.edu/datasets/
d131003/dataaccess. All CESM2-LE data are available via https://
www.cesm.ucar.edu/community-projects/lens2/data-sets. Hydro-
climate whiplash data can be found via the Zenodo repository at 
https://doi.org/10.5281/zenodo.13381749 (ref. 188).

Code availability
Code used to generate hydroclimate whiplash data can be found via 
the Zenodo repository at https://doi.org/10.5281/zenodo.13381749 
(ref. 188).
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