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Abstract Precipitation extremes are increasing globally due to anthropogenic climate change. However,
there remains uncertainty regarding impacts upon flood occurrence and subsequent population
exposure. Here, we quantify changes in population exposure to flood hazard across the contiguous United
States. We combine simulations from a climate model large ensemble and a high‐resolution
hydrodynamic flood model—allowing us to directly assess changes across a wide range of extreme
precipitation magnitudes and accumulation timescales. We report a mean increase in the 100‐year
precipitation event of ~20% (magnitude) and >200% (frequency) in a high warming scenario, yielding a
~30–127% increase in population exposure. We further find a nonlinear increase for the most intense
precipitation events—suggesting accelerating societal impacts from historically rare or unprecedented
precipitation events in the 21st century.

Plain Language Summary Heavy rainfall is increasing globally due to human‐caused global
warming. However, it is still unclear how these increases in heavy rainfall might affect flood risk.
In this paper, we investigate how global warming and population changes together may be affecting the
number of people at risk from floods in the United States. We combine simulations from a climatemodel and
flood model—allowing us to consider a wide range of heavy rainfall events. We report a ~20% increase in the
size and a >200% increase in the frequency of very heavy and rare rainfall events, which leads to a ~30–127%
increase in the number of people at risk from floods. Finally, we find that the heaviest rainfall events
increase by the widest margin—suggesting the possibility of major increases in damage and disruption
caused by severe floods in the 21st century.

1. Introduction

Increases in heavy precipitation have long been a predicted consequence of global warming. Multiple lines
of evidence—from basic thermodynamic arguments to simulations using complex coupled Earth system
models—agree that the exponential increase in the water vapor‐holding capacity of the atmosphere should
enable a substantial increase in global precipitation extremes (Trenberth et al., 2003). Recent evidence has
increasingly borne out these predictions, and increased occurrence of heavy precipitation events has now
been observed both within the contiguous United States (Wright et al., 2019a) and globally (Du et al., 2019).
Using newly developed climate attribution frameworks (e.g., Diffenbaugh, 2020), the detected regional and
global increases in precipitation extremes have been directly linked to anthropogenic climate change (CC).

The spatial and temporal characteristics of precipitation are also expected to change in a warming climate.
While global mean precipitation is projected to increase by 1–3% per degree centigrade of warming (Kharin
et al., 2013), extreme precipitation is projected to increase at a much faster rate—5–10% per degree and
locally higher in some regions (Pendergrass et al., 2017). Moreover, substantial changes on the dry side of
the precipitation distribution are also plausible. Previous work has shown that the frequency of dry days
is likely to increase across most continental regions (Polade et al., 2014) and that increases in extreme wet
day frequency will largely be counterbalanced by decreased frequency of light to moderate precipitation
(Thackeray et al., 2018). Collectively, these shifts are expected to result in an overall increase in hydrocli-
matic intensity (Giorgi et al., 2011) and an attendant increase in “precipitation whiplash” in some regions
(Swain et al., 2018).
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Despite this strong theoretical, numerical modeling, and observation‐based evidence pointing toward
increased precipitation extremes, changes in flood occurrence are subject to considerably more uncer-
tainty. In isolation, larger or more frequent heavy precipitation events would be expected to increase
the overall magnitude and/or frequency of flood events. CC‐driven increases in heavy precipitation
events, however, coincide with numerous other Earth system shifts that may act to diminish, or amplify,
the fluvial and pluvial responses to extreme precipitation increases. Potentially confounding and possi-
bly nonlinear influences upon potential flood hazard include decreases in antecedent soil moisture due
to increased evaporation resulting from rising temperatures (Ficklin et al., 2019), increased plant water
use efficiency amidst increasing atmospheric carbon dioxide concentrations (Fowler et al., 2019) and
decreased cool‐season and/or high elevation snowpack (Davenport et al., 2020). Direct human interven-
tion in catchment systems, including land use change, urbanization, and flood‐management infrastruc-
ture, also complicates the overall picture (Kundzewicz et al., 2014). These challenges are underscored by
the fact that—despite increasingly pronounced increases in extreme precipitation—there is not yet
robust observational evidence pointing to systematic increases in flood occurrence or severity (Sharma
et al., 2018).

In the present analysis, we seek to characterize the response of contiguous United States (CONUS) potential
flood hazard to projected increases in extreme precipitation by combining existing simulations from a cli-
mate model large ensemble and an advanced hydrodynamic flood model. In doing so, we intentionally
exclude potentially confounding Earth system factors—considering the effect of projected changes in
extreme precipitation in isolation. Thus, our approach offers a “zeroth order” estimate of changes in poten-
tial flood hazard due to CC—an estimate that may still be strongly modulated, regionally and seasonally, by
nonprecipitation‐related factors (Brunner et al., 2020).

Critically, the use of a large climatemodel ensemble allows for direct assessment of simulated changes in rare
(and even historically unprecedented) high‐magnitude precipitation extremes (i.e., those with return inter-
vals as high as 200 years) without making any a priori assumptions regarding the underlying statistical dis-
tribution of precipitation or its stationarity over time. This represents a key strength of the present
approach, as it resolves a considerable challenge faced in prior studies—which have repeatedly found that
future risk estimates for historically rare events are highly sensitive to the statistical techniques used in ana-
lysis and are therefore subject to large uncertainties (e.g., Diffenbaugh et al., 2017; Lopez‐Cantu et al., 2020).
The large sample size afforded by numerous replications of both historical and future climate regimes in the
present analysis thus allows us to quantify changes in very high‐magnitude events which occur too infre-
quently, even in century‐long empirical records or smaller climate model ensembles, to exhibit a robust sig-
nal. Additionally, our use of a high‐resolution hydrodynamic model for the flood hazard component of this
assessments allows us to leverage the “best of both worlds”—a large sample size from the climatemodel large
ensemble, as well as the watershed‐level specificity offered by a state‐of‐the‐art inundation mapping tool.
Details regarding this combined climate and hydrodynamicmodeling approach, as well as associated caveats
and major simplifying assumptions, can be found in the following section.

2. Materials and Methods
2.1. Quantifying Changes in Extreme Precipitation

Our use of a large climate model ensemble allows us to empirically quantify projected changes in rare,
high‐magnitude precipitation events without making parametric assumptions regarding the sparsely
sampled historical record. The subsequently large sample size of simulated model‐years—which includes
2,200 model‐years of data for the 55‐year historical period and 1,200 model‐years for each of the 30‐year
future climate periods—allows us to empirically quantify simulated changes in precipitation events with
recurrence intervals (RIs) as high as 100–200 years without using parametric curve fitting or making
any a priori assumptions regarding the underlying precipitation distribution. Previous work has shown
that extreme event assessment techniques that rely heavily on such parametric approaches to characterize
changes in climate events for which there is little or no historical precedent are typically subject to very
high uncertainty (Lopez‐Cantu et al., 2020; Swain et al., 2020; Tye & Cooley, 2015), and subsequent esti-
mates of relative risk ratios can vary widely depending on the presumed shape of the distribution
(Swain et al., 2014). Thus, the use of a large ensemble coupled with relatively simple empirical analysis
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of subsequent extreme precipitation occurrence represents a substantial advantage—allowing us to make
stronger claims regarding the rarest and highest magnitude precipitation events with the greatest potential
societal impacts.

In this study, all precipitation data are drawn from existing climate simulations using the fully‐coupled
Community Earth System Model (CESM 1.0) as implemented in the CESM Large Ensemble Experiment
(CESM‐LENS, Kay et al., 2015). This communitymodeling experiment explores the response of the global cli-
mate system to increased anthropogenic greenhouse gas forcing, leveraging a perturbed initial‐condition
ensemble (n = 40 members) to comprehensively characterize the wide range of natural internal variability.
The ensemble includes three distinct forcing regimes: (1) a single, 1,800‐year long preindustrial (circa ~1850)
control run in which there are no anthropogenic climate forcings; (2) 40 replications of a twentieth century
(1920–2005 of which we use data from 1950 to 2005) “historical” climate run, using perturbed initial condi-
tions and incorporating observed anthropogenic greenhouse gas and aerosol forcings; and (3) 40 replications
of projected 21st century (2005–2100 of which we use data from 2020 to 2049 and 2050 to 2079) climate
assuming a high rate of anthropogenic greenhouse gas emissions (i.e., the RCP8.5 scenario), again using per-
turbed initial conditions.

We define two future climate regimes in this study—a “medium warming” scenario (representing the esti-
mated climate system response to RCP8.5 emissions during the near‐future 2020–2049 period during which
average projected atmospheric CO2 concentrations would be approximately ~450–500 ppm (van Vuuren
et al., 2011) and a “high warming” scenario (representing RCP8.5 emissions during the more distant
2050–2079 period during which average projected atmospheric CO2 concentrations would be approximately
~600–650 ppm). Recent work has shown that while recent socioeconomic trajectories suggest that global
warming will likely be less than that which would result from the RCP8.5 socioeconomic pathway, warming
and subsequent climate impact trajectories are largely scenario‐independent in the near‐term (i.e., through
the mid‐21st century) and begin to strongly diverge thereafter (Fuss et al., 2014). Thus, we intend the “med-
ium warming” portion of the analysis to be interpreted as a plausible, high‐likelihood prediction for extreme
precipitation‐related impacts during the 2020–2049 period irrespective of ongoing and future climate mitiga-
tion activities. The “high warming” scenario, on the other hand, may be viewed as a more speculative future
scenario in which climate mitigation actions are less effective than set forth in the Paris Climate Agreement
or in which amplifying natural Earth system feedbacks are stronger than currently anticipated. Plausible cli-
mate scenarios for the late 21st century likely fall in between the “medium” and “high” warming scenarios
set forth here—and thus, it would be reasonable to assume that impacts upon extreme precipitation and
potential flood hazard would fall somewhere in between these two scenarios (Fuss et al., 2014; Rogelj
et al., 2016).

We first use daily, all‐season precipitation data from CESM‐LENS to quantify the magnitude of simulated
extreme events during the historical period for a wide range of event magnitudes (RIs of 5, 10, 20, 50, 100,
and 200 years) and precipitation accumulation time horizons (1, 2, 3, 5, 7, 14, and 28 days) on a grid point
basis for the CONUS. Once we have calculated the precipitation value associated with each magnitude
and duration combination at each climate model grid point, we compare these historical reference values
to those during the preindustrial and future “medium” and “high” warming scenarios (Figure 1). Changes
in event magnitude are assessed as absolute differences in the actual precipitation value associated with
the ith RI and jth accumulation time horizon during each period. Changes in event frequency are
assessed using a “peaks over threshold” approach, empirically counting exceedances of the historical pre-
cipitation value associated with the ith RI and jth accumulation time horizon during each period
(Figures 2 and 3).

To ensure statistical robustness, we employ a bootstrap resampling approach at two points in the analysis.
First, to obtain the baseline precipitation values associated with the ith RI and jth accumulation time hor-
izon in each of the n = 40 ensemble members, we randomly subsample (with replacement) individual days
(or consecutive multiday periods) from each period in each member to calculate m = 25 distinct estimates
of the associated precipitation values. Precipitation values from the resulting subsample are then arranged
in descending order, and pseudo‐empirical estimates of the quantiles associated with specific RIs are calcu-
lated. Then, after the m * n = 1,000 bootstrap iterations have been completed, all model‐years are pooled
across the 40 ensemble members in each period separately for each climate regime (i.e., preindustrial,
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historical, medium warming, and high warming). In the final step, the precipitation values across all 1,000
iterations are averaged, with the resulting lat/lon array of values for each i,j combination taken as the final
estimate.

All p values in this analysis are the product of two‐tailed Student's t tests, which test the null hypothesis that
the means of two populations are statistically indistinguishable. Differences in CONUS‐wide changes in
extreme precipitation frequency and intensity are assessed as the difference between climate regimes
(e.g., high warming vs. historical) across all CONUS grid boxes (defined as a nominally rectangular region
bounded by 30°N, 50°N and 125°W, 65°Wand including both land and ocean grid boxeswithin these bounds)
in each period. For all CONUS‐wide values, individual grid box values are weighted by the cosine of latitude.

2.2. CESM “fitness for purpose”

As with all experiments involving climate model simulations, the degree of fidelity in representing
extreme precipitation events is an important consideration. Present‐generation climate models, most of

(a) (b)

(c) (d)

(e) (f)

Figure 1. Change in extreme precipitation occurrence, CESM‐LENS. Left column: relative (%) change in frequency of
exceedance of the 1‐day precipitation accumulation associated with a 100‐year RI under three different climate
forcing regimes as simulated in CESM‐LENS. Right column: same as left, except plotted values depict relative changes in
magnitude (vs. frequency). In both columns, changes are calculated using a fixed 1950–2005 baseline for 1‐day
precipitation accumulations. Yellow, green, and blue regional boxes in (a) are bounding boxes for the Pacific Southwest,
Upper Mississippi, and Eastern Seaboard regions, respectively.
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which have relatively coarse (~100–200 km) spatial resolution, have difficulty in representing short‐timescale
(i.e., subdaily) and/or convective extreme precipitation events—which must be indirectly parameterized,
rather than explicitly represented. These challenges can be mitigated through the use of high‐resolution
and/or convection‐permitting, nonhydrostatic models (Prein et al., 2017). The heavy computational burden
of such simulations, however, means that large ensembles of nonhydrostatic model simulation do not yet
exist—although recent analyses have attempted to bring together the “best of both worlds” by conducting
targeted dynamical downscaling nested within large ensembles (Huang et al., 2020).

Given this reality, we therefore ask: Can CESM‐LENS provide a sufficiently good estimate of present‐era and
future precipitation extremes for the purposes of providing a first‐order estimate of changes in continental‐
scale flood potential? Precipitation simulated by CESM1 has been previously validated against remotely
sensed satellite (TRMM) observations in a global context (Norris et al., 2019) and against gauge‐based in situ
observations in a regional context (e.g., Swain et al., 2018). In general, such comparisons have suggested that
CESM1 offers a reasonable representation of global patterns in bothmean and extreme precipitation, though
with substantial regional biases in some cases. Globally, CESM simulated extreme precipitation exhibits
slight positive biases in the tropics and slight negative biases in the midlatitudes (+4% and −4%,

(a) (b)

(c) (d)

Figure 2. Change in extreme precipitation occurrence as function of event magnitude. (a) Ratio of frequency of
exceedance of extreme 1‐day precipitation accumulations under a high emissions scenario (RCP8.5 during
2050–2079) to that during the historical period (1950–2005) as a function of event magnitude (i.e., return interval).
(b) Same as (a) but for 7‐day precipitation accumulations. (c) Ratio of magnitude of extreme 1‐day precipitation
accumulations under a high emissions scenario (RCP8.5 during 2050–2079) to that during the historical period
(1950–2005) as a function of event magnitude (i.e., return interval). (d) Same as (c) but for 7‐day precipitation
accumulations. In all panels, the thick purple line denotes the average value across all CESM‐LENS grid boxes
across CONUS; the green, blue, and yellow lines denote regionally averaged values in specific subregions, and the
light (dark) purple shading denotes the upper/lower tercile (10th/90th) percentile bounds for values across all
CONUS grid boxes. Ratios greater than 1 denote an increase in frequency/magnitude; all horizontal axes are
logarithmic.
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respectively, for the 6‐hour accumulation with 10‐year local RI (Norris et al., 2019). This likely reflects the
higher fraction of resolved large‐scale precipitation (as opposed to unresolved convective precipitation) at
higher latitudes versus lower latitudes (Pendergrass et al., 2019).

Multiple studies have noted that, within the CONUS, CESM precipitation exhibits relatively low biases
across the western half of the United States (including the Pacific Coast (Swain et al., 2018) but higher
(dry) biases in the east—particularly in the southeastern United States (Norris et al., 2019). Previous work
has shown that the inability to resolve propagating mesoscale convective systems, which are responsible
for a substantial fraction of extreme precipitation across portions of the central United States, may play a role
in these biases east of the Rocky Mountains (Prein et al., 2017). While the underlying CAM5 dynamical core
in CESM has been shown to reasonably represent tropical cyclone‐associated precipitation in aggregate
(Villarini et al., 2014), other work has suggested that the spatial structure of tropical cyclones and associated
precipitation in 1° models such as CESM is not always realistic (Bacmeister et al., 2018). This may be an
important caveat in places where the contribution of tropical cyclones to precipitation extremes is impor-
tant, such as along the Gulf Coast and in the southeastern United States. Additionally, we also acknowledge
the long‐standing “drizzle problem” in coarse‐resolution atmospheric models, which results in simulated
precipitation that is too frequent but insufficiently intense (e.g., Kay et al., 2018; Stephens et al., 2010).
However, biases in CESM‐LENS specifically appear to be much lower for higher magnitude and

(a) (b)

(c) (d)

Figure 3. Change in extreme precipitation occurrence as function of event duration. (a) Ratio of frequency of exceedance
of extreme (100‐year RI) accumulations under a high emissions scenario (RCP8.5 during 2050–2079) to that during
the historical period (1950–2005) as a function of event duration (i.e., timescale of precipitation accumulation). (b) Same
as (a) but for 10‐year RI events. (c) Ratio of magnitude of extreme (100‐year RI) precipitation accumulations under a
high emissions scenario (RCP8.5 during 2050–2079) to that during the historical period (1950–2005) as a function of
event duration (i.e., timescale of precipitation accumulation). (d) Same as (c) but for 10‐year RI events. In all panels, the
thick purple line denotes the average value across all CESM‐LENS grid boxes across the CONUS; the green, blue,
and yellow lines denote regionally averaged values in specific subregions, and the light (dark) purple shading denotes the
upper/lower tercile (10th/90th) percentile bounds for values across all CONUS grid boxes. Ratios greater than 1 denote
an increase in frequency/magnitude; all horizontal axes are logarithmic.
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longer‐duration magnitude precipitation events, increasing confidence that CESM‐LENS is an appropriate
tool for studying precipitation extremes on broad spatial scales and multiday timescales (Norris et al., 2019).
We further note that the “change factor” approach used in the present study—which quantifies only the
relative, internally consistent simulated changes in extreme precipitation—also acts as a form of implicit
bias correction by de‐emphasizing the importance of CESM's background precipitation climatology in
assessment metrics.

2.3. Hydrodynamic Modeling Using Fathom‐US

The hydrodynamic flood inundation model used in this analysis, Fathom‐US, produces spatially continuous
flood hazard maps of the entire CONUS. The model was first presented and validated in Wing et al. (2017),
based on the global flood model building methodology of Sampson et al. (2015) and simulates both fluvial
and pluvial flooding. We emphasize that no new hydraulic model components are introduced in the present
study beyond those which have been previously described and validated. Extreme river flows are computed
using a regional flood frequency analysis (RFFA) of U.S. Geological Survey stream gauges, based on the
global RFFA (Smith et al., 2015) and generally covering the ~1960–2010 period. These fluvial model bound-
ary conditions are routed in 1D through subgrid‐scale river channels based on HydroSHEDS hydrography
data (Lehner et al., 2008; Neal et al., 2012). The computational hydraulics are based on LISFLOOD‐FP,
which numerically solves a local inertial formulation of the shallow water equations in 2D for out‐of‐bank
flows and in 1D for in‐channel flows (Bates et al., 2010; de Almeida et al., 2012; Neal et al., 2012).
Elevation data are sourced from the 1 arc second (~30 m) resolution U.S. Geological Survey National
Elevation Dataset, with hydraulic simulations executed at this native resolution. Known flood defenses
are incorporated explicitly into the model and are sourced from the U.S. Army Corps of Engineers
National Levee Database.

The fluvial model is executed for all rivers with a drainage area exceeding 50 km2. Small headwater catch-
ments, as well as surface water flooding, are simulated by the pluvial model. The pluvial model component
retains the features of the fluvial model, except the river flow boundary conditions are replaced by precipita-
tion inputs which fall directly onto the elevation grid (Sampson et al., 2013). The rainfall inputs are defined
using Intensity‐Duration‐Frequency relationships fromNOAA. Infiltration rates are computed based on soil
data, while standards of drainage capacity are assumed based on degree of urbanization.

The model thus produces 17 CONUS‐wide fluvial and pluvial flood hazard maps, ranging return periods
from 1 in 5 years to 1 in 1,000 years (20–0.1% annual exceedance probability). The model has been rigorously
validated against engineering‐grade, local‐scale flood models and against observations of real flood events
(Emanuel, 2017; Wing et al., 2017; Wing et al., 2019; Wing et al., 2019). Correspondence between the flood
extents simulated by Fathom‐US and those of benchmark data sets in these studies amounted to a 70–90% fit
(accounting for both overprediction and underprediction), approaching a performance ceiling given likely
errors in the benchmarks themselves.

2.4. Connecting Extreme Precipitation and Flood Potential Exposure

Precipitation simulations from CESM‐LENS were converted to spatially explicit gridded data describing the
relative change in magnitude of extreme precipitation events with RIs of 1 in 5, 10, 20, 50, 100, and 200 years
over accumulation lengths of 1, 2, 3, 5, 7, 14, and 28 days across the CONUS. These “change factors” were
generated for preindustrial (c ~ 1850), “medium warming” (RCP8.5 2020–2049), and “high warming”
(RCP8.5 2050–2079) scenarios relative to the historical (1950–2005) CESM‐LENS simulation. These
changes were used to perturb the underlying boundary conditions of the Fathom‐US model, permitting
the generation of new return period flood hazard maps for each scenario via extraction from the precom-
puted (historical) catalog. This extraction is performed in a hydrologically consistent manner, where the
existing inundation depths are discretized into river catchments defined by HydroBASINS (level 10 from
Lehner & Grill, 2013).

For the fluvial model, the characteristics of the river cell at each river catchment outlet initially determine
which rainfall accumulation length to consider. Larger river flooding is dependent upon longer periods of
rainfall, while headwater streams respond to short‐duration rainfall. A time to concentration (Tc) at each
outlet is therefore estimated based onManning's equation and unpaved shallow concentrated flow velocities
set out in USDA (1986). This Tc stipulates which rainfall accumulation length to consider for each
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catchment (see full Tc distribution in supporting information Figure S1b). The mean precipitation change
factor for a given return period, as derived from CESM‐LENS, is then sampled from all cells upstream of a
given river catchment outlet. Using the RFFA‐defined flood frequency curve for this river, the given return
period flow magnitude is perturbed by the precipitation change factor. The return period of this new river
discharge, with respect to the historical RFFA, is then computed, and the corresponding return period flood
hazard map is extracted.

As an example, consider how catchmentA's 100‐year flow of 500m3 s−1might change by 2079. The estimated
Tc to catchmentA's outlet is 4.8 days, so we consider the changes to the 100‐year 5‐day rainfall accumulation
in the 2050–2079 time horizon. The mean change factor for the 100‐year rainfall upstream of catchment A's
outlet is 15%, meaning the 100‐year flow by 2079 at this point is projected to be 575m3 s−1. This new 100‐year
flow corresponds to the historical 200‐year flow in catchment A, as defined by the RFFA. Since we have
already simulated the 200‐year flow, we simply extract the inundation depths in catchmentA from this simu-
lation and stitch it into a new 2050–2079 100‐year CONUS flood map. This is repeated for all CONUS river
catchments, where different historical return periods are extracted for each catchment depending on the rele-
vant duration rainfall change factors.

For the pluvial model, only 1‐day rainfall accumulation changes are considered. This is the shortest accu-
mulation length considered in the climate portion of the analysis, and we also note that pluvial floods are
generally characterized by rapid responses to brief but intense downpours. The mean change factor is
computed within each catchment (not all areas upstream), and a similar process is performed as with
the fluvial model, except that changes are referenced to the Intensity‐Duration‐Frequency curves of the
input rainfall.

The result of these processes is the production of multiple ~30 m resolution, CONUS‐wide, fluvial and plu-
vial, return period flood hazard maps for each scenario. To compute potential flood exposure, populations
residing in inundated cells for each map are summed. For the present day, a ~30 m dasymetric map of popu-
lation based on census counts and high‐resolution land‐use data from the U.S. Environmental Protection
Agency (USEPA) EnviroAtlas program is employed. For future scenarios, existing gridded projections of
population from the USEPA Integrated Climate and Land‐Use Scenarios (ICLUS) project are employed.
In ICLUS, these future population projections are generated using a demographic model to estimate
county‐level population changes, which are then distributed to housing units using a 90 m resolution spatial
allocation model. The underlying demographic model accounts for fertility, mortality, and migration, pro-
jecting county counts of population cohorts split by ethnicity, age, and gender. The spatial allocation model
primarily requires existing housing unit and population data, undevelopable lands, commercial and indus-
trial land use, transport networks, and groundwater well density to distribute the county‐level projections
based on assumptions related to travel times, household size, and land‐use demand. In the present analysis,
we have chosen a single “medium growth” scenario from ICLUS (SSP2), which closely tracks population
projections of the U.S. Census Bureau. These population projections are based on a host of assumptions,
including (a) the continuation of historical migration patterns, (b) land use changes which are consistent
with historical land‐use transitions (e.g., expansion versus densification of cities), and (c) historical demands
for amenities and transport capacity. These population projections therefore represent a single plausible rea-
lization of future U.S. demographic conditions drawn from infinitely many possibilities based on model
parameters grounded in historical data. More details may be found in USEPA (2016).

2.5. Caveats and Simplifying Assumptions

This analysis considers the flood potential of a changing climate by equating changes in rainfall and changes
in river flows, as is common in large‐scale flood hazard projections (e.g., Uhe et al., 2019). The method con-
siders only catchment size and rainfall changes in its determination of inundation scenarios, assuming that
the antecedent conditions and flood drivers that are not explicitly modeled (e.g., snowpack and antecedent
soil moisture) remain consistent with historical observations. This represents a substantial simplifying
assumption, as it has been previously demonstrated that flood response to extreme precipitation is strongly
modulated by a variety of nonprecipitation factors on a seasonally and regionally varying basis, many of
which are expected to change in a warming climate (e.g., Brunner et al., 2020). However, the simple frame-
work we employ here provides an efficient means for the estimation of flood impacts at the contiguous scale
—essentially examining a CC‐adjusted version of historical CONUS flood events based on projected changes
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in extreme precipitation. Ultimately, this allows us to quantify the idealized “zeroth order” effect of changes
in extreme precipitation to flood potential hazard and to isolate the effect of extreme precipitation from other
nonstationary climate variables.

Finally, we note that the hydrodynamic modeling approach used in the present study presumes structural
integrity of existing flood control infrastructure such as dams and levees under very extreme conditions.
This means that while inundation due to dam/levee overtopping is accounted for, inundation resulting from
potential structural failure or collapse is not (contrarily, we also acknowledge that our methods may under-
estimate the level of protection offered by flood defense structures not included in the underlying USACE
database). Recent events—including the near‐catastrophe at California's Oroville Dam in 2017 and the
devastating regional flooding caused by levee and dam failures in the Upper Midwest (in 2019) and in
Michigan (in 2020)—signal that existing water infrastructure is already at risk during sufficiently severe pre-
cipitation events in the present climate and that catastrophic failures can indeed occur. Thus, in light of the
widespread increase in precipitation extremes reported herein and the fact that our modeling approach can-
not quantify further increases in risk from possible levee and/or dam failures, the inundation maps and
population exposure estimates presented do not necessarily represent worst‐case estimates of the flooding
that could potentially result from very high magnitude (100‐ to 200‐year RI or greater) precipitation events.
Quantifying these additional risks from possible levee and/or dam failures is beyond the scope of this manu-
script but should be urgently considered in future research and in developing climate adaptation/emergency
response plans.

3. Widespread Simulated Increase in Extreme Precipitation

We find widespread and substantial increases in simulated extreme precipitation events in two both future
climate scenarios with elevated levels of anthropogenic greenhouse gas forcing, but these increases do not
clearly emerge until after the twentieth century historical climate period across the CONUS. We report
small, regionally heterogeneous, and statistically weak changes in the frequency of occurrence (CONUS
average = −2.4%, p = 0.028 for ~100‐year RI event) and magnitude (CONUS average = −1.0%, p = 0.398)
of extreme precipitation events during the historical period (1950–2005) relative to the preindustrial period
(c. 1850, Figures 1a and 1d). This suggests the lack of a systematic signal regarding changes in
high‐magnitude precipitation events during the latter half of the twentieth century.

A much stronger signal emerges in both future climate scenarios which include greenhouse gas emissions
substantially above twentieth century levels. In the near‐term/medium emissions future (2020–2049) simu-
lations (see Methods for formal definition of “medium” and “high” emissions scenarios), widespread
increases in extreme precipitation frequency (CONUS average = +87.1%, p < 0.001) and magnitude
(CONUS average=+10.5%, p< 0.001) are apparent across nearly the entire CONUS, Figures 1b and 1e), with
frequency increases locally exceeding 200% and magnitude increases exceeding 20%. In the long‐term/“high
emission” future simulations (2050–2079), large increases in both the frequency (CONUS average = +
223.0%, p < 0.001) and magnitude (CONUS average = +19.7%, p < 0.001) of precipitation occur across the
entire domain, with large regions experiencing frequency increases exceeding 300% (i.e., a three‐fold
increase) and magnitude increases exceeding 25% (Figures 1c and 1f).

We find that the largest projected increases in the magnitude of 100‐year precipitation events occur over por-
tions of the Gulf Coast states and southeastern United States more broadly. Strikingly, this includes portions
of Texas, Louisiana, and both North and South Carolina—regions that have all experienced catastrophic
floods between 2015 and 2020 resulting from slow‐moving tropical cyclones (Touma et al., 2019) that pro-
duced extreme precipitation events greatly exceeding historical 100‐year RIs (Emanuel, 2017). Large
increases in the frequency of 100‐year precipitation events occur across a broader region encompassing most
of the southeastern United States and Eastern Seaboard, as well as a broad portion of the western United
States extending from the Pacific coast to the western Rocky Mountains. This latter region includes
California—a state previously identified as being at high risk of increased future precipitation extremes as
a result of warmer, moister atmospheric river storms (Huang et al., 2020; Swain et al., 2018). In sum, the
CESM Large Ensemble projects large increases in both frequency and intensity of high‐magnitude precipita-
tion events across a wide range of underlying climatological regimes and precipitation‐generating processes.
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3.1. Largest Increase for Rarest, Highest Magnitude Events

Weassess changes in simulated extreme precipitation across a range of eventmagnitudes (RIs of 5–200 years).
Here, we focus on the “highwarming” climate scenario to achieve the strongest signal‐to‐noise ratio.We find
that virtually all CONUS grid points exhibit positive increases in both event frequency and magnitude
(see tenth percentile bounds, Figures 2a–2d and 3a–3d) at all timescales, but the margin of exceedance of
historical thresholds increases monotonically with increasing event magnitude. As a result, the greatest pre-
cipitation increases occur for extremely high magnitude events, that is, those with historical RIs of
50–200 years. In the CONUS average, for instance, the relative increase in frequency of the 200‐year RI event
(for 1‐day accumulations) is more than double that of the 5‐year RI event (frequency ratio of 3.5 vs. 2.0 in
Figure 2a, corresponding to a 250% vs. 100% increase, respectively). This is similar to results using 7‐day
precipitation accumulation windows (Figure 2b), where the increase in frequency for the 200‐year event is
also more than double that of the 5‐year event (+315.1% vs. +133.7% increase, respectively). For changes
in the magnitude of precipitation associated with events of a given frequency (i.e., using fixed RIs in future
vs. historical periods), we again find progressively larger increases in precipitation intensity with increasing
event magnitude—although the margin of this increased scaling by event size is smaller than for frequency
changes (Figures 2c and 2d vs. 2a and 2b). The 1‐day accumulation window, for instance, yields magnitude
increases ranging from+14.3% (for the 5‐year event) to+22.2% (for the 200‐year event).

We next assess changes in simulated extreme precipitation across a range of event durations (precipitation
accumulation timescales of 1–28 days). Here, we once again report absolute increases in event magnitude
and frequency at all timescales for virtually all grid boxes (Figure 3). From a frequency perspective, these
increases are essentially flat for accumulation timescales of 1–5 days (frequency ratio of ~3.1, corresponding
to a 210% increase, for the 100‐year event CONUS mean) but begin to rise sharply for accumulation time-
scales greater than 7 days (frequency ratio rising as high as 6.6, corresponding to a 560% increase, at
28‐day timescales, Figures 3a and 3b). From a magnitude perspective, however, the rate of increase across
accumulation timescales is quite flat (magnitude ratio ~1.2 for both the 100‐year event and the 10‐year
event).

The fact that frequency and magnitude‐based metrics of extreme precipitation increase are consistent
when assessed as a function of event magnitude but diverge when assessed as a function of event duration
is worth further discussion. In general, empirical and simulated precipitation distributions are non‐
Gaussian and exhibit heavy upper tails (Papalexiou et al., 2013). One consequence of such a distribution
is that, for events sufficiently far in the upper tail, even modest increases in the relative magnitude can
equate to large, nonlinear increases in frequency. This intrinsic statistical property of heavy‐tailed precipi-
tation distributions thus may partially explain the divergence between the flatness of Figures 3c and 3d
and the steepness of Figures 3a and 3b. The physical interpretation in this instance is intuitive: the abso-
lute amount of precipitation occurring during long‐duration (28 days) events is much larger than during
short‐duration (1 day) events—meaning that a 15–20% increase in precipitation accumulation equates to
both a larger absolute increment of precipitation increase and a statistically much rarer event at long
timescales.

In contrast to the event duration results, however, both frequency and magnitude scaling are strongly posi-
tive as a function of event intensity. Not only is the absolute increment of precipitation increase larger for
higher intensity events, but the rate of increase of the precipitation increment (i.e., the second derivative
of precipitation as a function of magnitude, d2P/d2Pm) itself increases as a function of event magnitude
(d2P/d2Pm > 0). The monotonic increase in event frequency as a function of event intensity, therefore, is
unlikely to be solely explained by a simple upward shift in the mean of the underlying heavy‐tailed precipi-
tation distribution. Indeed, this simulated nonlinear “acceleration” of future changes in precipitation as a
function of event intensity has previously been identified in CESM‐LENS and a subset of other global climate
models (Mizuta & Endo, 2020), mainly in the tropics (Pendergrass et al., 2019). The present results are drawn
from a mainly midlatitude domain—suggesting that a similar phenomenon also exists outside of the tropics,
and across the CONUS specifically, at sufficiently extreme event thresholds (i.e., 50‐ to 200‐year RI events).
Norris et al. (2019) found a similarly large and nonlinear increase in simulated extreme precipitation in
CESM‐LENS across a global domain and also demonstrated that the primary mechanism for such increases
is a thermodynamically driven increase in atmospheric moisture. However, this moisture increase was
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(a)
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(c)

(d)

Figure 4. Change in population exposure to extreme flood potential due to climate change. (a) Population living within
100‐year floodplain (for freshwater inundation) under preindustrial (circa ~1850) climate conditions (in millions).
(b) Change in population living within 100‐year floodplain for historical (1950–2005) relative to preindustrial climate
conditions. (c) Change in population living within 100‐year floodplain for medium emissions future scenario (RCP8.5
2020–2049) relative to preindustrial climate conditions. (d) Change in population livingwithin 100‐year floodplain for high
emissions future scenario (RCP8.5 2050–2079) relative to preindustrial climate conditions. In all panels, population is
held constant at present‐day (~2010) levels and spatial distribution.
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modulated in a regionally varying manner by changes in extreme event
duration—amplifying precipitation extremes in the midlatitudes and
dampening them in the tropics.

Collectively, these complex precipitation scalings along magnitude and
duration axes have potentially large practical implications for climate
adaptation and infrastructure design purposes. Precipitation changes
inferred directly from the relatively short historical record—and/or
short‐running/small ensemble climate model simulations—generally
cannot be used to robustly characterize changes in very high magnitude
precipitation extremes (Lopez‐Cantu et al., 2020). As a result, traditional
analysis methods may substantially underestimate the increase in very
high magnitude and/or very long‐duration precipitation events—pre-
cisely those which present the greatest risk of harmful flooding to urban
areas and critical infrastructure. Moreover, this aspect of our findings
appears to hold across a wide range of geographic and climatological
regimes. This is illustrated by the similarity between the yellow, green,
and blue regional curves in Figures 2 and 3—which correspond to the
bounding boxes in Figure 1a denoting the Pacific Southwest, Upper
Mississippi, and Eastern Seaboard regions, respectively.

The nonlinearity and spatial pattern of these precipitation scalings may
also offer preliminary insights into underlying mechanisms. Numerous
previous studies have reported that warming‐induced increases in simu-
lated extreme precipitation are larger than would be expected from
Clausius‐Clapeyron scaling alone (i.e., ~7% per degree C of warming)—
especially for short‐duration convective events (e.g., Prein, Liu, Ikeda,
Trier, et al., 2017) and for at least certain types of non‐convective events,

such as landfalling atmospheric river storms (Huang et al., 2020). Our results suggest that regional maxima
of extreme precipitation increase occur along the Gulf Coast/southeastern United States and along the
Pacific Coast (Figures 1e and 1f)—regions where convective storms and atmospheric rivers, respectively,
are indeed responsible for a large fraction of the most intense precipitation events (Touma et al., 2018).

At short timescales, these accentuated increases may arise from increased horizontal moisture convergence
in a warmer/wetter atmosphere (e.g., Lenderink et al., 2017). Over longer accumulation timescales, Neelin
et al. (2017) found that increases in the variability of moisture convergence—combined with the existence of
fixed moisture thresholds associated with event initiation and termination—yielded preferentially large
increases in the largest and historically rarest precipitation events. Increases in the spatial extent of extreme
precipitation (Lenderink et al., 2017; Lochbihler et al., 2019) and/or decreases in the horizontal translational
speed of specific types of extreme precipitation‐generating events, such as tropical cyclones in the midlati-
tudes (e.g., Kossin, 2018; Zhang et al., 2020), could also contribute to the nonlinear increase in the highest
magnitude events we report here (Figure 2). Moreover, Thackeray et al. (2018) demonstrated a global preci-
pitation “compensation effect,” whereby future precipitation increases are concentrated temporally into the
most intense events at the expense of weaker events. This suggests that the accelerated increase in event
magnitude at the highest intensities shown in the present analysis may be linked to a more fundamental
aspect of the global climate response. A comprehensive assessment of these diverse phenomena and possible
physical drivers is beyond the scope of this study, but will be the focus of future work.

4. Changing Climate and Demography Drive Increased Flood Exposure

Although changes in population exposure to 100‐year RI flood events due to historical CC (1950–2005) are
modest and spatially heterogeneous, we find that much larger and more widespread increases occur in both
medium and high future warming climate scenarios (Figure 4). During the historical period, modern‐day
population exposure changes are generally small (Table S1; Figure 4b). These relatively weak trends during
the historical period, which encompass both increases and decreases in population exposure on a statewide
basis, likely reflect relatively weak external forcing compared to future scenarios. Large increases in

Figure 5. Contributions of climate and demographic changes to 100‐year
flood exposure. Projected population exposure to extreme flood events
(100‐year RI) given projected climate‐driven changes in extreme
precipitation only (purple columns), projected population growth only
(blue columns), and both climate and population growth together (sum of
stacked green and yellow columns). Yellow portion of the rightmost
column denotes “nonlinear” portion of total increase in population
exposure exceeding that which would result from the simple addition of
climate and population changes in isolation (i.e., population growth in
“exposure hotspots”).
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(a)

(b)

(c)

Figure 6. Change in 100‐year flood inundation for selected locations. Inundation maps derived from hydrodynamic model depicting estimated flood extent
resulting from an extreme precipitation event with an approximately 100‐year RI in the historical climate (1995–2005, dark purple shading) and a “high
warming” climate scenario (RCP 8.52050–2079, light purple shading). Locations depicted include (a) the Sacramento Valley in northern California including the
Sacramento River, (b) the confluence of the Des Moines River and Raccoon River near Des Moines in central Iowa, and (c) the Pearl River near Jackson,
Mississippi. Additional inundation maps may be found in Figure S2.
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population exposure, however, quickly emerge in most U.S. states by mid‐century (2020–2049) in the med-
ium warming scenario even when total population is held constant (Figure 4b). In the high warming sce-
nario—which could occur later during the 21st century (2050–2079)—population exposure continues to
increase, with five states (Florida, California, Texas, Illinois, and Louisiana) experiencing cumulative expo-
sure increases exceeding 0.5 million people (Table S1). We emphasize that while absolute population expo-
sure increases virtually everywhere due to widespread increases in extreme precipitation in both medium
and high warming scenarios, it is clearly most concentrated in states with the highest preexisting risk
(Figure 4a). In relative terms, statewide increases in population exposure range from a low of +3.6% in
Oregon to a high of +32.8% in Minnesota under the medium warming scenario and from +11.8% in
Oregon to +48.9% in Illinois under the high warming scenario (Figure 4c).

In Figure 5, we partition the effects of simulated CC (i.e., increases in extreme precipitation) and projected
human development patterns (i.e., increases in population and changes in spatial distribution) upon popu-
lation exposed to the “100‐year flood.” Assuming no change in total population, we find that CC increases
CONUS‐wide potential flood exposure by 7.83 million (+19.2%) under the medium warming scenario
and 12.04 million (+29.5%) under the high warming scenario—and more than doubles exposure in a high
warming, high population growth (PG) scenario by 2050–2079 (+126.6%). Meanwhile, projected PG alone,
in the absence of CC, would yield an exposure increase of 20.35 million and 33.98 million using mid‐century
and late‐century estimates, respectively.

Yet, surprisingly, we find that the combined effects of CC and PG are not simply additive. In both the med-
ium and high warming scenarios, the total population exposure increase is substantially greater than would
be estimated from the simple sum of CC and PG (by 2.02 million for the medium warming scenario and 5.53
million for the high warming scenario). The nonlinear increase can be attributed to “exposure hotspots”—
regions that were neither within the historical 100‐year flood plain nor substantially populated during the
twentieth century but subsequently fall within the expanded 21st century floodplain and experience pro-
jected population expansion during the same interval. In other words, these exposure hotspots quantify
the flood exposure increment contributed by future population expansion into new inundation zones
caused by CC. To illustrate the greatly expanded 100‐year flood footprint in a warmer 21st century versus
historical climate and its extent relative to nearby major population centers, we compare estimated
inundation maps of several specific regions (including the Sacramento and San Joaquin valleys in
California, central Iowa, central Mississippi, northern Missouri, and eastern Georgia) in Figures 6 and S2.
Finally, we quantify this hotspot effect at the individual state level. We find the largest absolute hotspot
population exposure increases (>500,000 people per state in a high warming scenario) across the most
populous “Sunbelt” states of California, Texas, and Florida. However, the largest relative increases in hot-
spot exposure (exceeding 15% of the total exposure increase in a high warming scenario) occur in quite dif-
ferent regions—including the southeastern Atlantic coast states of Georgia, North Carolina, and South
Carolina; the Upper Midwest states of North Dakota and South Dakota; and portions of the
Intermountain West (especially Nevada) (Figure S3).

5. Conclusions

We find that substantial increases in the occurrence of extreme precipitation events and subsequent popula-
tion exposure to potential flood hazard are essentially inevitable over the near‐term (i.e., over the next
30 years) across the CONUS and may continue to rise thereafter depending on the real‐world trajectory of
greenhouse gas emissions. A larger increment of the increases in climate‐driven increases in population
exposure occur during the earlier (2020–2049) period versus later (2050–2079) period—suggesting that there
is a relatively large population in areas in close proximity to present‐day floodplains that is highly vulnerable
to even modest increases in potential flood hazard. The rising 21st century flood potential hazard from
climate‐driven increases in extreme precipitation is thus likely to be compounded by the so‐called “expand-
ing bulls‐eye effect” (Ashley et al., 2013), whereby the growing geographic extent of populated urban and
exurban areas produces a broader “target” for geophysical natural hazards. Such a reality points to the
urgent need for targeted policy and land use interventions to guide future development away from these high
risk zones (Johnson et al., 2020) and potentially also to consider alternative interventions (e.g., habitat
restoration that increases floodwater storage) within present‐day floodplains likely to be inundated with
greater depth and frequency due to CC. Future increases in population exposure may also have a
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disproportionate impact on vulnerable populations and disadvantaged communities, potentially exacerbat-
ing current inequities.

Finally, we emphasize that the disproportionately large projected increases in the most intense precipitation
events (i.e., those with 50‐ to 200‐year RIs) may be of particular concern from a catastrophe riskmanagement
perspective (Anenberg et al., 2019; Wright et al., 2019b). Major dams, bridges, and levees in urban areas are
generally designed to withstand the worst plausible flood events—and our analysis assumes such infrastruc-
ture performs optimally as designed, with no structural failures. Yet, our findings point to the potential for
relatively widespread occurrence of historically unprecedented extreme precipitation events in the coming
decades—including some which will likely exceed those associated with historical 100‐ to 200‐year RIs.
Indeed, several examples of flood events exceeding contemporary “plausible worst case” estimates have
occurred over the past decade in the CONUS—including the record‐breaking deluge associated with
Hurricane Harvey, which stalled near Houston, Texas in 2017 (e.g., Emanuel, 2017). Even lesser extreme
precipitation events (i.e., those with historical RIs of 25–50 years) have recently resulted in damaging and
life‐threatening dam failures in the United States, including in the Upper Midwest in 2019 and Michigan
in 2020. Thus, these projected increases in high‐end precipitation extremes point to the critical importance
of incorporating estimates of strongly nonstationary tail risks into design considerations for new civil engi-
neering projects, as well as the growing need to reassess safety margins and emergency protocols for existing
critical infrastructure.
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