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The emerging field of extreme-event attribution (EEA) seeks to answer the question: ‘‘Has climate change influ-
enced the frequency, likelihood, and/or severity of individual extreme events?’’ Methodological advances over
the past 15 years have transformed what was once an unanswerable hypothetical into a tractable scientific
question—and for certain types of extremeevents, the influence of anthropogenic climate changehas emerged
beyond a reasonable doubt. Several challenges remain, particularly those stemming from structural limitations
in process-based climatemodels and the temporal and geographic limitations of historical observations. How-
ever, the growing use of large climate-model ensembles that capture natural climate variability, fine-scale sim-
ulations that better represent underlying physical processes, and the lengthening observational record could
obviate some of these concerns in the near future. EEA efforts have important implications for risk perception,
public policy, infrastructure design, legal liability, and climate adaptation in a warming world.
Looking beyond the Mean Climate
There is now an extremely high level of scientific confidence that

human activities are the only plausible explanation for the

observed �1.2�C rise in global mean temperature, and a human

fingerprint has likewise been found in numerous other changes in

climate. However, although themean climate is a useful metric of

overall climate change, it remains a statistical construct: no

place actually experiences its local mean. Moreover, the aspects

of climate change that have the greatest effects on society and

ecosystems—such as heatwaves, downpours, hurricanes,

droughts, andwildfires—are inherently far from themean. There-

fore, to understand, mitigate, and adapt to climate changes that

could harm the health and well-being of humans and ecosys-

tems, it is imperative to understand how (and why) these

climate-related extremes are changing in a warming world.

This branch of climate science, often referred to as extreme-

event attribution (EEA), has evolved rapidly in recent years.

This evolution has faced a number of challenges. In particular,

structural limitations in process-based climate models, as well

as temporal and geographic limitations of historical observa-

tions, lead to substantial challenges in quantification and valida-

tion. However, recent methodological advances, coupled with

longer observational records and improved climate models,

have opened the door to systematically addressing the question

of whether climate change has influenced the likelihood and/or

severity of individual extreme events.

Viewing Climate Change through an Extreme-
Weather Lens
The news media and public often ask: ‘‘Did climate change

cause this specific extreme weather event?’’ In a very literal
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sense, the answer to such a rigidly posed question will always

be ‘‘no.’’ All events in the dynamically coupled Earth system

are ultimately the product of numerous complex, interrelated

processes acting across a wide range of spatiotemporal scales.

There will thus rarely (if ever) be a traceable singular cause for

any specific event, and variability will always play an important

role. Indeed, as recently as a decade ago, a common response

from scientists was that ‘‘no single weather event can be attrib-

uted to climate change.’’

Weather and climate, of course, are not the same. Weather de-

scribes variations on very short day-to-day timescales, whereas

climate integrates over much longer time horizons. A key step for-

ward in the development of EEA has been the acknowledgment

that weather and climate exist on a continuum. Because climate

describes the aggregate statistical properties ofweather—inother

words, the plausible envelopeofweather conditions at a particular

point in time—it encompasses not only ‘‘typical’’ conditions but

also rare, high-magnitude weather extremes. From this perspec-

tive, understanding multi-decadal climate change can reasonably

be framed as an exercise in quantifying shifts in the overall proba-

bility distribution of day-to-day weather conditions.

As a result, climate scientists have increasingly recognized

that the strict question of binary causality is ill posed. Because

climate is inherently a probabilistic descriptor of largely stochas-

tic underlying weather processes, it stands to reason that scien-

tific investigations into the influence of climate change upon

extreme weather events should also be framed in probabilistic

terms. Additionally, a considerable body of evidence suggests

that human-caused changes in the low-probability, high-conse-

quence ‘‘tails’’ of the weather distribution could be considerably

different from what might be inferred from extrapolating shifts in
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commons.org/licenses/by/4.0/).

mailto:dlswain@ucla.edu
https://doi.org/10.1016/j.oneear.2020.05.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oneear.2020.05.011&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Detrended mean

C
lim

at
e 

va
ria

bl
e

Observed
magnitude

Step 2: Estimate the Counterfactual

Trend in

Climate models with
human forcing

Climate models
without human forcingTr

en
d 

in
 c

lim
at

e 
va

ria
bl

e

Using observations Using climate models

Step 3: Compare Actual and Counterfactual
Using observations Using climate models

Step 4: Make Formal Attribution Statement

Step 1: Define the Event

1

3

5

7

9
− 50%

75%

95%

25%

5%
−

P
ro

ba
bi

lit
y 

ra
tio

R
el

at
iv

e 
to

 s
ta

tio
na

ry
 c

lim
at

e

−

Ratio > 1
Forcing increased
probability

Ratio > 1
Trend increased
probability

1

3

5

7

9

U
nc

er
ta

in
ty

Exceptionally
less likely

due to 
climate change

Very much
less likely

Less likely More likely

Very much
more likely

Virtually certain
could not have
happened without
climate change

Climate change
did not alter
likelihood

observations

A

B

C

D

2013 India floods

2013 California drought

Figure 1. Four Key Steps of EEA
Illustration of the typical EEA workflow using examples from the existing
literature.
(A) Define the extreme climate event, here illustrated by the magnitude of
anomalous high pressure during a drought event (adapted from Swain et al.,
2014, left) and of extreme precipitation during a flood event (adapted from
Singh et al., 2014, right).
(B) Calculate the counterfactual climate by using real-world observations and/
or climate models (adapted from Diffenbaugh et al., 2017).
(C) Compare actual and counterfactual climates, again by using real-world
observations and/or climate models (adapted from Diffenbaugh et al., 2020).
(D) Make a formal attribution statement regarding whether anthropogenic
climate change contributed to the likelihood and/or severity of the extreme
event (adapted from Lewis et al., 2019).
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the mean. Therefore, a growing number of studies have instead

begun to ask a more nuanced question: ‘‘Has climate change

influenced the frequency, likelihood, and/or severity of the

extreme event?’’ This seemingly subtle shift in perspective trans-

forms an essentially unanswerable question about absolute cau-

sality into one that is both scientifically tractable and practically

actionable—and that can be directly addressed with existing

observational and numerical modeling tools.
Diverse Attribution Approaches but Shared
Epistemology
As the field of EEA has rapidly expanded over the past decade,

different research groups have pioneered a range of novel ap-

proaches. Virtually all approaches share a common episte-

mology: using some combination of real-world observations, nu-

merical climate-model simulations, and rigorous statistical

techniques to separate the effects of actual human influence

on the climate system from a counterfactual ‘‘climate without hu-

man influence.’’ It is critical to understand both this general sci-

entific framing and the specific methodological variations

because results can be strongly dependent on the assumptions

and analysis techniques employed. In the sections that follow,

we first outline the basic methodological steps that are shared

across most EEA studies (Figure 1) and then more deeply

explore the range of approaches and assumptions that have his-

torically been employed in different contexts.

Key Steps in EEA

1. Define the event. What spatiotemporal scale and physical

variable(s) best characterize the event? Given an extreme

heatwave, for instance, appropriate metrics might include

daily maximum temperatures for a specific city, weekly

average temperatures for a region, combined heat and hu-

midity metrics, or underlying event drivers such as the

strength of the atmospheric underlying high-pressure

system.

2. Estimate the ‘‘counterfactual’’ climate. Quantifying the in-

fluence of global warming requires quantification of the

magnitude and/or likelihood of the event in a counterfac-

tual climate without human influence. One approach is to

quantify changes in the probability of the event in

climate-model simulations without anthropogenic climate

forcing. Alternative approaches include removing the

long-term trend from the historical climate time series, us-

ing statistical relationships between the climate variable

and global temperature, and using observational data

from a time period with little anthropogenic influence.

3. Compare actual and counterfactual climate. Are there sta-

tistically distinguishable differences in the probability and/

or severity of the event between the actual and counter-

factual climates? A number of different metrics have

been used, including the fractional difference in event

magnitude, the ratio of event probability (often called the

‘‘risk ratio’’), and the portion of the total risk contributed

by anthropogenic activities (i.e., the ‘‘fraction of attribut-

able risk’’). In addition, uncertainty quantification is a crit-

ical priority for both model- and observation-focused ap-

proaches. Key sources of uncertainty include the

statistical quantification of the probability of the event,
One Earth 2, June 19, 2020 523



Figure 2. Example of a Conditional and Ingredient-Based EEA
Assessment
Results from a conditional and ingredient-based EEA assessment of the in-
fluence of one particular aspect of climate change (sea-level rise) upon the
observed level of coastal inundation during a specific historical storm event in
New York City (Superstorm Sandy during October 2012). The upward and
leftward shift of the red curve shows that sea-level rise increased the severity
(depth) of the inundation by�20%but increased the likelihood of the observed
level of inundation (i.e., decreased the return period) by�300%. Adapted from
Lin et al., 2016.
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the ability of climate models to accurately simulate the

observed variability of the climate variable, the magnitude

of the ‘‘forced response’’ simulated by different climate

models, and the ‘‘irreducible uncertainty’’ in the forced

response contributed by internal climate variability.

4. Make a formal attribution statement. Most EEA ap-

proaches use a very high bar for attribution: the typical

null hypothesis is that human-caused climate change

did not influence the magnitude or probability of the

event, and rejecting that null requires a ‘‘beyond a

reasonable doubt’’ standard. If there is sufficient evi-

dence of a statistically distinguishable difference in the

actual versus counterfactual climate, the null hypothesis

can be rejected, and an affirmative attribution statement

can be made at a specific confidence level. Given the

multiple sources of uncertainty, attribution statements

often include multiple components (i.e., ‘‘there is a 95%

likelihood that global warming increased the probability

of the event by at least a factor of 2.86’’). New frame-

works have been suggested to simplify the final attribu-

tion statement (Figure 1D).

Absolute, Conditional, and ‘‘Ingredient-Based’’

Approaches

Initial decisions regarding how to define the event can influence

the entire EEA process described in Figure 1. In addition to the

decisions regarding appropriate physical metrics and spatio-

temporal scales, there is also a deeper philosophical choice

regarding which aspects of the event are most important and

how far down the chain of complex physical causality the attribu-
524 One Earth 2, June 19, 2020
tion methodology can be reasonably extended. These decisions

can ultimately shape the final EEA conclusion.

Consider an attribution study focused on the coastal inunda-

tion produced by a large hurricane making landfall at some spe-

cific location. One possible approach would be to consider the

full sample of all hurricanes that affected the region and ask

whether there has been a change in the likelihood of flooding

exceeding the observed threshold. This might be referred to as

an ‘‘absolute’’ approach because it considers overall changes

in event likelihood without accounting for the specific initial con-

ditions (i.e., the study is not preconditioned on the fact that a

large hurricane occurred at that specific location and at that spe-

cific time) or the contribution of any particular contributing factor

(e.g., sea level, precipitation intensity, and storm strength). As a

result, absolute approaches can complicate efforts to under-

stand which specific aspect of climate change has contributed

to changes in the probability or severity of the extreme event.

For example, without methods to isolate specific conditions, it

would be difficult to differentiate between contributions from

sea-level rise (which increase background water levels),

increasing atmospheric water-vapor content (which contributes

to the precipitation intensity of a given storm), and warming

ocean temperatures and decreasing vertical wind shear (both

of which act to intensify hurricanes).

Another approach, often referred to as the conditional or

‘‘storyline’’ approach, takes certain aspects of the event condi-

tions as given (such as the large-scale atmospheric conditions

at the time of the event) and asks whether climate change has

had a detectable effect upon modulating the outcome of the

event. Often, such attribution studies involve perturbing a subset

of relevant physical variables characterizing the state of the real-

world atmosphere and/or ocean by an increment commensurate

with the effect of climate change. In the hurricane example, a

conditional approach might involve using the real-world atmo-

spheric conditions from 5 days before the storm made landfall

as initial conditions in amodel simulation but prescribing sea sur-

face temperatures with the anthropogenic ocean warming trend

removed. A key strength is that the conditional approach can

help isolate the influence of specific physical aspects of climate

change. A significant weakness is that this approach cannot di-

agnose changes in the overall probability of the event or the

probability of individual constituent physical conditions.

An alternative to the absolute and conditional frameworks is

the ‘‘ingredient-based’’ approach (Figure 2). Here, investigators

first ascertain the most essential physical conditions known to

contribute to the severity of a given event and then assess

changes in the probability of these conditions. This approach

aims to combine some of the key strengths of the absolute and

conditional approaches because it (1) enhances understanding

of how anthropogenic climate change is influencing the underly-

ing physical drivers of extreme events, including the probability

that they co-occur; (2) makes no assumptions regarding the spe-

cific set of initial conditions that produced the event; and (3)

potentially enables attribution of event types that are poorly

simulated in climate models and/or sparsely sampled in obser-

vational datasets.

Magnitude versus Frequency Definitions

Fundamentally, two aspects of extreme events are typically as-

sessed in attribution studies: the probability and the severity
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Figure 3. Example of Collective EEA Assessments
(A) Collective EEA for multiple physical event types (hot, dry, and wet events on
different timescales) on a global scale with a large climate-model ensemble
(adapted from Diffenbaugh et al., 2017).
(B) Collective EEA for a specific event type (wildfire risk, as measured by area
burned) directly illustrates the contribution of climate change relative to a
counterfactual climate without human influence (adapted from Gonzales
et al., 2018).
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(Figure 2). The probability of an event is often defined as a rate of

exceedance of a fixed threshold defined with a historical base-

line—for instance, exceeding the 99.99th quantile of daily precip-

itation during the years 1920–1980. Conversely, the severity of

an event is often defined as a magnitude associated with a given

probability, such as ‘‘design floods’’ that are based on the

magnitude of the 100-year recurrence interval.

The probability and severity definitions can be two sides of the

same analytical coin (Figure 2). However, the differences be-

tween these definitions are sometimes highly consequential for

both broader communication and practical decision making.

For example, regional sea-level rise over the past two centuries

increased the severity of Superstorm Sandy’s flooding in New

York City by 22% (from �2.3 to �2.8 m for an event of Sandy’s

observed probability). According to the same analysis (Lin et al.,

2016), that same sea-level rise tripled the probability of the

observed flooding (from �1,200- to �400-year return period

for an event of Sandy’s observed severity). In colloquial terms,

a �20% increase might sound modest, whereas a tripling

sounds very large indeed—perhaps leading to awide divergence

in public perception regarding a study’s outcome.

Yet, both of these are equally valid—and statistically consis-

tent—metrics for quantifying the role of climate change, and

both are potentially useful in different contexts. The probabil-

ity-based metric, for example, could be highly relevant in a civil

engineering context. Given that water infrastructure ranging

from drainage culverts to large dams is typically designed to

accommodate events defined by fixed historical thresholds

(e.g., the amount of precipitation associated with a 100-year

recurrence interval), increases in the probability of exceeding

the original design threshold imply increased risk that the exist-
ing design capacity could be exceeded. The magnitude-based

metric, on the other hand, is of heightened relevance in a legal

and public policy context—instances in which it could be impor-

tant to know the fraction of known losses contributed by climate

change.

Individual versus Collective Event Attribution

Another key point of distinction is the difference between individ-

ual event attribution and what can be described as ‘‘collective

event attribution.’’ Individual event attribution seeks to answer

the question: ‘‘Has global warming influenced the likelihood or

severity of a specific observed historical event?’’ Conversely,

collective event attribution seeks to answer the question: ‘‘Has

global warming influenced the overall likelihood or severity of

extreme events of a certain type?’’ (Figure 3). Individual event

attribution might focus, for example, on whether the vegetation

flammability in the vicinity of Paradise, California, in November

2018 (the time and location of California’s deadliest and most

destructive wildfire in modern history) was made more likely or

more severe by global warming. Collective event attribution, on

the other hand, might focus on whether climate change has

increased the overall likelihood of high vegetation flammability

in the western United States (and, hence, that the record-setting

vegetation flammability was ‘‘consistent with’’ changes that

would be expected from climate change).

Recently, research groups have begun to offer ‘‘rapid

response’’ climate attribution targeted toward real-time weather

events and sometimes make a formal attribution statement

before the event even takes place. Emerging methods that apply

an anthropogenic signal to numerical weather forecasts enable

evaluations that are highly specific to the conditions of a given in-

dividual event. In addition, rapid statements can also be predi-

cated on precomputed metrics via collective event-attribution

methodologies that use large samples of observations and

climate-model simulations to evaluate a particular type of

extreme.

Similar collective attribution methodologies have also been

used to quantify the fraction of a region or the globe over which

anthropogenic forcing has already influenced the probability of

record-setting events (Figure 3) and to verify event-attribution

methodologies by using out-of-sample prediction-verification

frameworks.

Scientific Stumbling Blocks
Although the science of EEA has advanced dramatically since

the benchmark attribution study of the 2003 European heatwave

(Stott et al., 2004), several substantial challenges remain. The

most prominent relate to uncertainties surrounding the creation

and analysis of the counterfactual climate. Researchers have

used both statistical and climate-modeling approaches to quan-

tify the counterfactual, although there is no consensus on which

of these methods is the most suitable representation of event

probability or severity in the absence of human influence.

The challenge of the counterfactual is exacerbated by the fact

that, inmany cases, it remains difficult to estimate the event prob-

ability in the current climate. For sufficiently severe events, the ex-

isting observational record might simply be too temporally and/or

geographically limited to enable robust probability quantification.

One option is to use parametric curve fitting or other statistical

techniques from extreme value theory to approximate the
One Earth 2, June 19, 2020 525



Understanding of effect of climate change on event type
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Figure 4. Confidence in EEA by Physical Event Type
Qualitative depiction of the relative levels of confidence in the ability to perform
robust EEA as a function of physical event type. Such confidence varies
considerably across different atmospheric and Earth system phenomena as a
result of differences in understanding regarding how climate change can affect
underlying drivers, as well as differences in how these processes are repre-
sented in observations and/or climate-model simulations. In general, confi-
dence is highest for events most directly relating to temperature (such as
extreme heat) and lowest for events occurring on small spatial scales (such as
severe convective storms). Adapted from NASEM, 2016.
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recurrence interval of the event. However, multiple studies have

demonstrated that such statistical approaches are extremely sen-

sitive to the assumed functional form of the underlying distribution

and yield estimates of present-day probability that vary by orders

of magnitude. Large climate-model ensembles, which offer much

larger sample sizes, can help avoid the need to make such as-

sumptions about the underlying distribution. Yet this alternative

is still subject to the major caveat that present-generation climate

models cannot always reliably capture the underlying physical

processes responsible for certain types of events.

This caveat points to the larger question of whether climate

models are fit for purpose in the context of EEA. A major chal-

lenge is the trade-off between the fine model resolution that is

necessary for resolving the physical phenomena that produce

certain types of extreme weather and the large ensembles and

long integrations that are needed for fully characterizing internal

climate-system variability and distinguish the signal of climate

change. For instance, climate models are able to represent

�103-km-scale high-pressure systems responsible for extreme

heatwaves, but most are still too coarse to capture the full inten-

sity and behavior of �102-km-scale tropical cyclones and face

even greater challenges in simulating localized extreme precipi-

tation events, which can occur on spatial scales that are smaller

than a single global climate model grid cell. These climate-model

limitations are a key reason why the level of confidence associ-

ated with EEA statements varies considerably by the type of

extreme event (e.g., very high confidence for heatwaves versus

only moderate confidence for tropical cyclones; Figure 4).
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Together, these limitations raise the distinct possibility that

studies finding no influence of climate change are simply reflect-

ing the limitations of either the observational record or climate-

modeling capabilities. A key philosophical consideration thus

emerges: does an ‘‘absence of evidence’’ regarding the role of

climate change mean that there is truly ‘‘evidence of absence’’?

Clarifying why it can be difficult to distinguish between these two

possible interpretations of a negative attribution result is an

important aspect of communicating the results of such studies

to decision makers and the public.

The Way Forward
Recent developments in climate modeling and interdisciplinary

Earth system science highlight the potential for rapid near-term

advancement of EEA. Perhaps the most important development

has been the growth of the EEA field, which has expanded the

number of researchers developing, testing, and applying attribu-

tion methods to a wide variety of extreme events disrupting hu-

man and natural systems around the world. Efforts to systemat-

ically compare—and independently verify—different methods

have begun to emerge. Further codification of these efforts

and open access to underlying tools and data will help accel-

erate EEA capacity. In addition, efforts to develop clear and

consistent shared language around communicating the specific

characteristics or ingredients of the event being attributed, along

with associated scientific uncertainties, will help the public and

decision makers better understand the role of anthropogenic

climate change.

Growth in supercomputing resources has enabled continued

improvement in climate-model resolution, ensemble size, and

integration length, allowing for increased physical realism in

simulating processes that are critical in the evolution of extreme

events. Indeed, targeted studies are now routinely conducted at

sufficiently fine resolution that strong vertical motions—such as

occur during many extreme precipitation events, severe thun-

derstorms, and tropical cyclones—can be explicitly represented.

Although such ‘‘non-hydrostatic’’ simulations are still generally

limited in their spatial and temporal scope, early indications are

that this approach offers substantial promise for improving

model representation of complex weather and climate phenom-

ena. Similarly, the generation of multiple, single-model large en-

sembles (which use identical boundary forcings and model

physics but perturbed initial conditions) is also a promising

development for EEA because it allows for the intercomparison

and refinement of predictive skill across individual model varia-

tions. It also enables more accurate quantification of the proba-

bility of an event within the context of historical climate variability,

potentially offering a partial solution to the inadequacies of the

existing observational record. Similarly, large ‘‘single-forcing’’

ensembles that isolate the influence of various anthropogenic

greenhouse gases, aerosols, and land uses will help distinguish

between the respective roles of potentially competing anthropo-

genic influences.

Given the rising public profile of climate change, the relevance

of EEA for real-world applications in the legal, public-policy, and

climate-adaptation arenas will only continue to increase. For

example, as oil companies and other entities face potential civil

liability for global warming, a key question in assigning culpability

and subsequent penalties becomes whether climate change has



ll
OPEN ACCESSPrimer
demonstrably increased the likelihood and/or severity of

extreme events that have caused loss and damage. Likewise,

observed increases in destructive extreme events have increas-

ingly factored into public investment decisions, including infra-

structure funding requirements and state and federal disaster

declarations. Civil engineering and design considerations are

increasingly incorporating new information about the changing

characteristics of extremes in order to maintain adequate safety

margins and long-term resilience in a rapidly changing world.

Ultimately, it is clear that EEA is more than just a scientific ex-

ercise to improve communication of climate risks: it requires

rigorous scientificmethods to directly and quantitatively address

an increasingly wide range of urgent, societally relevant ques-

tions that have long-term implications for human well-being.

EEA can also help individuals and decision makers make sense

of contemporary disasters, helping to contextualize real-world

events relative to historical points of reference and aiding in

disaster preparedness and climate-adaptation activities.

Indeed, as EEA plays an increasingly prominent role in shaping

public perception of climate risks, it could ultimately influence

collective action to avoid levels of climate change that pose un-

acceptable risks to human and natural systems.
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