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Abstract Atmospheric rivers (ARs) often generate extreme precipitation, with AR temperature strongly
influencing hydrologic impacts by altering the timing and magnitude of runoff. Long‐term changes in AR
temperatures therefore have important implications for regional hydroclimate—especially in locations
where a shift to more rain‐dominated AR precipitation could affect flood risk and/or water storage in
snowpack. In this study, we provide the first climatology of AR temperature across five U.S. West Coast
subregions. We then assess trends in landfalling AR temperatures for each subregion from 1980 to 2016
using three reanalysis products. We find AR warming at seasonal and monthly scales. Cool‐season warming
ranges from 0.69 to 1.65 °C over the study period. We detect monthly scale warming of >2 °C, with the most
widespread warming occurring in November and March. To understand the causes of AR warming, we
quantify the density of AR tracks from genesis to landfall and analyze along‐track AR temperature for each
month and landfall region. We investigate three possible influences on AR temperature trends at landfall:
along‐track temperatures prior to landfall, background temperatures over the landfall region, and AR
temperature over the coastal ocean adjacent to the region of landfall. Generally, AR temperatures at landfall
more closely match coastal and background temperature trends than along‐track AR temperature trends.
The seasonal asymmetry of the AR warming and the heterogeneity of influences have important
implications for regional water storage and flood risk—demonstrating that changes in AR characteristics are
complex and may not be directly inferred from changes in the background climate.

Plain Language Summary Atmospheric river (AR) storms are well known for their ability to
accumulate snowpack, provide drought relief, and generate extreme precipitation and flooding along the
West Coast of the United States. AR temperature is an important variable for determining the water resource
impacts of a given event, such as the ratio of rain to snow delivered by an individual storm. As a result,
changes in AR temperature have implications for both water storage and flood risk. We find substantial
warming in ARs at both the seasonal and monthly scales, as well as seasonal and regional variations in the
amount of warming along the U.S.West Coast. To understand the warming of ARs at the landfall regions, we
compare these trends with trends in temperature along the AR tracks, background temperature over the
landfall region, and temperature over the coastal ocean adjacent to the landfall region. The most robust
warming occurs in November andMarch, which has important implications for increased regional flood risk
and decreased water storage, and motivates further investigation in other AR‐prone regions around
the globe.

1. Introduction

Atmospheric rivers (ARs) are long, narrow, filamentary plumes of moisture that are responsible for ~90% of
poleward moisture transport (Zhu & Newell, 1998). ARs are characterized by strong moisture transport,
which is most concentrated in the lower levels of the atmosphere (Ralph et al., 2005). Although ARs occur
globally (Waliser & Guan, 2017), they are of particular interest in regions in which ARs induce extreme pre-
cipitation and/or bring a substantial fraction of overall precipitation.

The U.S. West Coast meets both of these criteria: ARs deliver 30–50% of California's precipitation (Dettinger,
2011), are crucial for snowpack (Guan et al., 2010), and also induce hazards such as extreme precipitation,
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wind, floods, and mudslides (Neiman et al., 2011; Oakley et al., 2018; Ralph et al., 2006; Waliser & Guan,
2017). The simultaneous dependence on and vulnerability to ARs along the West Coast has motivated
substantial research into the sensitivity of AR characteristics to global and regional climate variability and
change (e.g., Dettinger, 2011; Gao et al., 2015; Gershunov et al., 2017; Hagos et al., 2016; Payne &
Magnusdottir, 2015; Ramos et al., 2016; Shields & Kiehl, 2016a; Warner et al., 2015).

The western U.S. is already experiencing the consequences of regional warming, including increased risk
of drought (Diffenbaugh et al., 2015), increased frequency of both wet and dry extremes (Swain et al.,
2016), and earlier timing of snowmelt (Cayan et al., 2001). In the Sierra Nevada, the elevation of the mean
snow line has risen sharply over the past 15 years (Hatchett et al., 2017), resulting in an increased fraction
of high elevation precipitation falling as rain rather than snow. Higher snow levels and increasing rain
fraction are expected to yield higher magnitude floods in this region (Das et al., 2011). The extremely
wet year of 2016–2017 provides a clear example of this regime, as increased temperatures produced
substantially higher runoff due to precipitation falling as rain rather than snow (Huang et al., 2018).
Likewise, the western U.S. has experienced a snowpack loss of 21% in the past century due to regional
warming (Mote et al., 2018), associated with decreased snow accumulation and increased snowmelt
(Kapnick & Hall, 2012).

These historical changes motivate the need to better understand how global warming could impact the AR
characteristics that shape water supply and hydroclimatic risk. A number of changes to AR characteristics
have been observed and/or hypothesized in recent years, including observed increases in integrated water
vapor transport (IVT) in North Pacific ARs (Gershunov et al., 2017), projected increases in AR length and
width (Espinoza et al., 2018), projected changes to the frequency of AR events and/or AR conditions (e.g.,
Espinoza et al., 2018; Gao et al., 2015; Shields & Kiehl, 2016a), and projected increases in the frequency of
extreme precipitation associated with ARs (Hagos et al., 2016; Shields & Kiehl, 2016b).

It has also been projected that air temperatures during AR events could warm considerably in response to
elevated greenhouse forcing (e.g., Dettinger, 2011; Guan et al., 2010). For example, late‐century
December–February (DJF) surface air temperatures during California ARs are projected to increase by ~2
°C (Dettinger, 2011). However, AR temperature has not been evaluated beyond the surface air temperature
during AR days, meaning that the temperature of three‐dimensional AR objects has not yet been character-
ized. Furthermore, despite projections of future AR warming, historical trends in AR temperature have not
yet been assessed.

Increases in AR temperature would have important implications for current and future water availability
and flood risk. Cool‐season precipitation has been warming across much of the western U.S. in recent
decades, leading to decreases in the proportion of precipitation falling as snow (Knowles et al., 2006).
However, because ARs generate roughly four times as much snow water equivalent as non‐AR storms
(Guan et al., 2010), distinguishing trends in AR temperature will be critical for understanding shifting
snow‐to‐rain ratios and the probability of rain‐on‐snow hazards in mountainous regions.

The impacts of AR temperature trends are particularly relevant in the western U.S. First, within the western
U.S., a very small number of individual AR storms contribute disproportionately to water supply or flood
hazards in a particular basin. Second, surface air temperatures during AR events exert considerable influ-
ence on snow accumulation totals (Guan et al., 2010), with warm air temperatures associated with higher
snowlines (Dettinger, 2011). Third, elevated AR temperatures are especially characteristic of exceptionally
warm and moist Pineapple Express‐type ARs, the tropical origins of which tend to increase the potential
for adverse hydrological impacts in regions with substantial winter snowpack (Guan et al., 2016; Hatchett
et al., 2018). Long‐term warming of ARs could thus increase the snowline elevation, decrease snow accumu-
lation, and decrease the probability that an individual AR will bring snow.

Because of the remote tropical moisture source of some ARs, future changes in landfalling AR temperature
are projected to occur at different rates than those of overall cool‐season precipitation (Dettinger, 2011).
Because ARs may contain advected moisture from remote source regions (Bao et al., 2006; Ralph et al.,
2011) and/or local recycled moisture (Dacre et al., 2015; Sodemann & Stohl, 2013), both remote and local
temperature trends may be relevant. Furthermore, if the trajectories of ARs across the Pacific differ by land-
fall region and/or time of year, that spatial and seasonal complexity could also influence AR temperature
trends. Thus, the relative influence of temperature trends at and adjacent to the landfall region versus
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temperature trends along the AR track will be a key question for understanding trends in landfalling AR
temperatures along the U.S. West Coast.

2. Materials and Methods
2.1. Overview of Methods

Our goal is to measure AR temperature trends using a metric that (1) captures the temperature of the most
relevant portion of the AR, both in its horizontal and vertical dimensions, and (2) can be employed flexibly
and robustly across different AR catalogs and reanalysis products.

Many AR catalogs have been developed using varying AR definitions, AR detection algorithms, and reana-
lysis data sets (Shields et al., 2018). We use an AR catalog (described in section 2.3.) to identify ARs that cross
U.S. West Coast grid boxes (Figure S1 in the supporting information). The catalog records the date, time, and
other metrics (e.g., length and orientation) for the detected AR object. We then retrieve associated moisture,
wind, and temperature fields from the ERA‐Interim, MERRA‐2, and NCEP‐DOE reanalyses (Dee, 2011;
Gelaro et al., 2017; Kanamitsu et al., 2002; respectively; section 2.2) for all dates on the AR catalog.

We define five contiguous study regions along the West Coast, from the U.S./Canada border in
Washington to the U.S./Mexico border in California (Figure 1a inset). The regions are chosen to span
similar meridional extents and to contain similar land‐to‐ocean ratios. We next characterize the tempera-
ture of each AR (section 2.4) across three satellite‐era reanalyses, producing a daily scale time series of AR
landfall temperatures for each region. We conduct this characterization separately for each reanalysis pro-
duct and then average the daily temperature values of each time series to produce a single multireanalysis
ensemble mean AR temperature time series for each region. From these time series, we assess trends in
AR landfall temperatures at the seasonal and monthly scales (section 2.5). Finally, we investigate the
source of landfalling AR temperature trends by comparing them with trends in background temperature
at the landfall destination region, trends in AR track temperature (section 2.6), and trends in prelandfall
coastal AR temperature (to test the influence of coastal sea surface temperatures, SSTs). To calculate
along‐track temperatures, we first track the landfalling ARs' back trajectories from the destination region
to the genesis region (section 2.6.2), which yields track density plots for each month and region of
eventual landfall.

2.2. Data

Atmospheric reanalysis products provide the capability to continuously measure ARs across the globe
during the satellite era. Horizontal resolution plays a role in AR detection (Jackson et al., 2016; Shields
et al., 2018), as algorithms may fail to detect ARs in low resolution products (Jackson et al., 2016).
However, products with coarser spatial resolution have successfully been employed in AR studies (Guan
& Waliser, 2015; Ralph et al., 2018). Subdaily time resolution is also important because ARs are transient
and highly filamentary, with an average landfalling time of only 20 hr (Ralph et al., 2013).

The ERA‐Interim (ERA‐I; Dee, 2011), Modern‐Era Retrospective Analysis for Research and Applications
(MERRA; Rienecker et al., 2011), and NCEP Climate System Forecast Reanalysis (CSFR; Saha et al., 2010)
products have been documented in capturing AR characteristics found in satellite observations (Jackson
et al., 2016), with ERA‐I exhibiting the smallest bias in AR frequency and landfall latitude. In order to eval-
uate the robustness of our results across multiple reanalysis data sets, we conduct our analysis on MERRA‐2
(the product on which the AR detection algorithm in Mundhenk et al., 2016,–hereafter MBM16–is run and
the preferred product in the AR Tracking Method Intercomparison Project; Shields et al., 2018), along with
ERA‐I (a product used in numerous AR studies; e.g., Guan & Waliser, 2015), and NCEP‐DOE R2 (a lower
resolution product that also spans the satellite era). The horizontal resolution varies by product: ~0.5° ×
0.5° for MERRA‐2, ~0.75° × 0.75° for ERA‐I, and 2.5° × 2.5° for NCEP‐DOE.

2.3. AR Catalog

We employ a U.S. West Coast AR catalog using a detection algorithm based on MBM16. The catalog detects
ARs over the North Pacific basin from 1980 to 2016, using MERRA‐2 reanalysis (Gelaro et al., 2017). The
catalog's algorithm uses anomalous IVT for AR detection and employs a Lagrangian approach to detect
AR objects over a large domain across consecutive time slices.
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Recent work has identified IVT as the variable most suited for AR detection (Guan & Waliser, 2015; Lavers
et al., 2012). The use of IVT rather than integrated water vapor captures wind‐drivenmoisture transport. IVT
therefore better corresponds to the orographically induced precipitation characteristic of ARs (Neiman et al.,
2002; Ralph et al., 2013) and is more correlated with cool‐season precipitation in the western U.S. (Rutz
et al., 2014).

As originally defined in MBM16 (and later modified and detailed in Ralph et al., 2018), the AR detection
algorithm is based on IVT anomalies, where IVT is adjusted for its seasonal cycle at each grid box to yield
a seasonally corrected IVT anomaly. A 94th percentile threshold of the IVT anomaly is then applied to
distinguish AR objects. Geometric constraints are also applied. These include length and aspect ratio con-
straints and specific constraints designed to remove IVT objects with tropical‐cyclone‐like features.
Therefore, note that it is possible for an area of high IVT to be omitted from the AR catalog. The AR detection
process results in AR object masks projected on a latitude/longitude grid. The catalog used in this study
provides time stamps of landfalling ARs detected at grid boxes along the U.S. West Coast (Figure S1).

2.4. AR Temperature Metric

We select reanalysis fields for ARs detected during the cool season (October to March). For each cool‐season
AR date stamp, we use daily specific humidity, zonal wind, meridional wind, and air temperature fields from
each reanalysis product. We calculate IVT following Lavers et al. (2012) and others by vertically integrating
water vapor transport from 1000 to 300 hPa:

IVT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
g

∫
300 hPa

1000 hPa
qu dp

 !2

þ 1
g

∫
300 hPa

1000 hPa
qv dp

 !2
vuut

where g is acceleration due to gravity, q is specific humidity, u is the zonal component of wind, and v is the
meridional component at each pressure level.

After calculating IVT for dates identified in the AR catalog, we determine AR event temperature. The
purpose of our temperature metric is to capture the temperature of ARs over the landfall regions, since that
is where hydroclimatic impacts occur. We thus calculate AR temperature for each region separately.

The MBM16 catalog was defined using only the MERRA‐2 reanalysis. We find that IVT distributions—
including absolute IVT magnitude—vary across reanalyses on AR days (supporting information Figure

Figure 1. (a) Mean atmospheric river (AR) temperature by month and study region. Inset map shows the five West Coast regions of landfall analyzed in this study:
Washington (WA), Oregon (OR), Northern California (N CA), Central California (C CA), and Southern California (S CA). (b) Monthly mean background
temperatures for each region. (c) AR temperature from (a) minus background temperature from (b). All temperature is over the time period of 1980–2016 and
vertically averaged from 1000 to 750 hPa. Outlines on triangles indicate month‐regions in which the distribution of AR temperature is significantly distinct
(p < 0.05) from that of background temperature. To assess significance at each month‐region, we use the Kolmogorov‐Smirnov test on the monthly mean
populations of AR and background temperatures, respectively (N = 37 for each population by month‐region).
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S3). In particular, the distribution of NCEP‐DOE IVT values is much lower than MERRA‐2 and ERA‐I
(supporting information Figure S3). Therefore, in order to calculate AR temperature across the multiple
reanalysis data sets, we first define AR presence based on the dates identified in the MBM16 catalog. After
subselecting those dates in each reanalysis data set, we apply a relative IVT threshold that accounts for
these IVT differences across reanalysis products by normalizing to the AR day IVT distribution in each
reanalysis data set.

For each reanalysis product, we first subselect the days identified in the MBM16 catalog. Next, we select grid
points on each AR day for which the absolute value of IVT exceeds that reanalysis product's 50th percentile
of AR day IVT values over an East Pacific/West Coast domain (supporting information Figure S3). (Themag-
nitude of the absolute IVT threshold is 163 kg/m/s for MERRA‐2, 162 kg/m/s for ERA‐I, and 139 kg/m/s for
NCEP‐DOE.) This threshold allows us to measure the temperature of grid points that fall in the top half of
that reanalysis product's IVT distribution for the days that the MBM16 catalog determined that an AR was
present. We stress that the threshold itself does not define whether IVT features are ARs—that is the role of
AR catalogs. Thus, to generate the ensemble‐mean AR temperature time series, AR objects must exist in the
MBM16 AR catalog as originally detected on MERRA‐2, but only those grid points that reach the reanalysis‐
specific AR intensity threshold within the landfalling region are included in the temperature calculation.
This additional IVT constraint is necessary for generalizing our analysis framework across multiple reana-
lysis products and AR catalogs, as AR catalogs are often specific to a single reanalysis product and often only
provide time stamps of AR occurrence (rather than masks of AR features detected in the particular
reanalysis product).

For each region, we first remove AR days that do not contain grid boxes reaching the IVT threshold
anywhere over the region. We then average AR temperatures over grid boxes reaching the IVT threshold
in the horizontal dimension and from 1000 to 750 hPa in the vertical dimension. We analyze air temperature
only up to 750 hPa because the majority of AR moisture is present at the lower levels of the atmosphere
(Ralph et al., 2004, 2005). This process is conducted for each reanalysis product separately, resulting in three
daily scale time series of AR temperature, which we subsequently average together to produce a single time
series of AR temperature for each region.

Depending on geometric orientation, spatial extent, and duration, a single AR object may make landfall in
more than one region, potentially at different points in its life cycle. However, due to the narrow width of
ARs, some ARs only make landfall in one region, while others make landfall on different days and/or with
different local temperatures. Thus, given the long and narrow spatial scales of ARs and the large geographic
variations in temperature for a single landfalling AR object, we select AR events—and determine their
temperatures—separately for each region. Supporting information Table S1 quantifies the number of ARs
that are cross counted in each region.

2.5. AR Landfall Temperature Trend Assessment

We calculate the trend in the overall time series of cool‐season mean AR temperature (October to March) for
each region along the U.S. West Coast. January to March of each season are associated with the previous
calendar year or current water year. We also assess AR temperature trends binned by each cool‐season
month. To do this, we analyze trends in the time series of monthly mean temperature for each individual
month—six time series, each with 37 values—in order to equally weight each month's average temperature
regardless of the number of AR occurrences in a particular month.

We calculate all trends using linear regression and assess the statistical significance of trends using an F test.
We follow the Intergovernmental Panel on Climate Change (IPCC, 2014) in reporting the change over period
(Δ) as the slope of the time series multiplied by the number of years in the time series.

2.6. Background and AR Track Temperature Trends
2.6.1. Background Temperature Trends at Landfall Destination
We assess the linear trend of monthly mean temperature from 1980 to 2016 over each of the five West Coast
regions. In order to compare directly with the landfalling AR temperature trends, we average the monthly
mean ERA‐I, MERRA‐2, and NCEP‐DOE temperature values over the same portion of the lower tropo-
sphere as the AR temperature analysis (1000 to 750 hPa).
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2.6.2. Coastal AR Temperature Trends Prelandfall
To assess the possible influence of trends in coastal SSTs on landfalling AR temperature trends, we calculate
the trends in AR temperature over a coastal oceanic region associated with each landfall region. This analy-
sis is conducted in the same manner as AR landfall trends (described in section 2.5), except that the regions
are shifted to the west by 8° of longitude, in order to cover the coastal ocean area directly adjacent to the
regions of landfall (supporting information Figure S4).
2.6.3. Along‐Track AR Algorithm
We calculate the trends in AR track temperatures using individual AR tracks across the North Pacific basin.
To obtain the prelandfall AR locations through time, we employ an AR tracking algorithm to detect the
prelandfall locations of the ARs detected by the MBM16 algorithm in the MERRA‐2 reanalysis. We employ
the tracking algorithm inMERRA‐2 and then characterize AR track temperature in all three reanalyses used
in this study (section 2.6.4).

The tracking algorithm first searches for a detected AR within each region during the day of landfall. Given
an AR detected within the landfall region, the algorithm records the feature's IVT‐weighted centroid to
define the AR's location in time and space, as in MBM16. At this step, the AR object is given a unique track-
ing label. Next, the algorithm generates a 3° × 3° tracking box around the AR feature's centroid. (We chose
the 3° × 3° size of the tracking box in concordance with the expected propagation speed of an AR's centroid;
abrupt changes in AR shape could generate large changes in AR centroid location between time stamps,
although the actual calculated tracks shown in Figure 3 suggest that this is rare.) The algorithm then exam-
ines the previous 6‐hourly time step (e.g., 12 to 6 UTC or 0 to 18 UTC on the previous day). If AR grid cells are
located within the box around the centroid, then the algorithm considers this AR to be the same AR at the
subsequent time step. The algorithm adds this centroid location to the track and generates a new box over
the new centroid. If two AR features are located within the box during the tracking process then the
algorithm retains the feature with the closest centroid. The process continues, proceeding incrementally
backward in time, until there is no AR within the box. We consider this final time step as the time of AR
genesis and save the AR centroid as the genesis point. We retain the entire spatiotemporal series of AR track
points as a full AR track. This process generates track information for each AR, including the AR centroid's
latitude and longitude for each time stamp. Backtracked AR objects that split are all considered part of the
full AR track associated with the AR landfall event.
2.6.4. Along‐Track AR Temperature
We calculate mean lower atmospheric temperature (1000 to 750 hPa) of each AR along the respective tracks
computed in section 2.6.2. Following the use of the AR object's centroid to characterize AR track location in
space and time in previous studies (MBM16; Payne & Magnusdottir, 2014), we use the centroid point to
characterize AR track temperature. Therefore, for each time step in the AR track, we characterize AR track
temperature using the vertical mean temperature (1000 to 750 hPa) in each of the three reanalyses at the grid
point associated with the AR centroid (N = 49,199 track points for each reanalysis). We repeat this process
for each reanalysis product and then average the track temperatures between reanalyses to produce the
ensemble mean track temperatures.

To assess trends in monthly AR track temperatures, we first bin the AR track temperatures (at native resolu-
tion across the Pacific basin) by destination region and month of occurrence. For each month‐region, we
then calculate monthly mean AR track temperature across all AR track temperatures over the Pacific basin
(resulting in a monthly mean time series of N = 37). To quantify long‐term trends by month and region, we
perform linear regression on the time series of monthly mean AR track temperature.
2.6.5. Trend Type Comparison
To investigate possible influences on AR landfall temperature trends (hereafter ARlandfall), we compare the
magnitudes of ARlandfall temperature trends with (1) background temperature trends at the destination
region (BKlandfall), (2) temperature trends along the AR tracks (ARtrack), and (3) AR temperature trends
in coastal oceanic regions adjacent to the regions of landfall (ARcoast) as an indicator of the influence of
coastal SSTs. For each month at each region (hereafter month‐region), we calculate the trend closest to
the ARlandfall trend (in °C) by comparing the absolute values of |BKlandfall − ARlandfall|, |ARtrack −

ARlandfall|, and |ARcoast − ARlandfall|, and note the trend (ARtrack, ARcoast, or BKlandfall) that is closest to
ARlandfall (i.e., the minimum of |BKlandfall − ARlandfall|, |ARcoast − ARlandfall|, and |ARtrack − ARlandfall|;
see supporting information Figure S5).
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To evaluate if the closest trend to ARlandfall is significantly closer than the second closest trend at a given
month‐region, we then compare the absolute values of the closest and second closest trend. For each
month‐region, we define this difference as Δ trend proximity (see schematic in supporting information
Figure S5). Given the background climate variability, some differences between the four AR trend types
are likely to arise by chance. In order to distinguish differences in the trend types from this background
noise, we estimate the distribution of Δ trend proximity by sampling random BKlandfall, ARcoast, and
ARtrack trend proximity magnitudes (|BKlandfall − ARlandfall|, |ARcoast − ARlandfall|, and |ARtrack −

ARlandfall|) across all month‐regions, taking the difference between the closest and second closest values
to obtain Δ trend proximity, and repeating 100,000 times. Then, from the distribution of bootstrapped Δ
trend proximity (Figure S5), we choose the value that corresponds to two standard deviations (0.56 °C) as
the threshold for identifying Δ trend proximity values larger than the background noise. Thus, for a given
month‐region, if the difference in proximity of closest and second closest trend is larger than 0.56 °C, then
the closest trend magnitude is considered significantly closest.

3. Results
3.1. AR Temperature Climatology

We calculate mean AR temperature (1980–2016) for each landfall region during each cool‐season month
(Figure 1a). Monthly mean AR temperature exhibits a consistent seasonality across the regions: the warmest
ARs occur in the early months of the cool season, with ~4 °C of cooling between October and December.
However, the absolute magnitude of regional mean AR temperatures varies strongly by latitude (e.g., the
December mean is 3 °C inWashington and 10 °C in Southern California), with all months exhibiting a nega-
tive south‐to‐north temperature gradient. Differences in monthly mean temperature between adjacent
regions are generally ~1–2 °C, with Washington ARs exhibiting mean temperatures that are ~7 °C cooler
than Southern California ARs across the seasonal cycle.

Although background regional temperatures exhibit a similar seasonal cycle (Figure 1b), the relationship
between regional mean AR temperatures and background temperatures is not consistent across the regions
(Figure 1c). First, AR temperatures exhibit less regional variation than background temperatures, with inter-
regional spread of ~7 °C for AR temperatures (Figure 1a) and ~9 °C for background temperatures
(Figure 1b). Second, monthly mean AR temperatures are generally warmer than the background in the three
northernmost regions and cooler than the background in Southern California (Figure 1c). Central California
represents the approximate midpoint of this gradient, with AR temperatures and background temperatures
exhibiting statistically similar values in all months except October and January. Overall, 19 of 30 month‐
regions contain monthly AR temperatures that are significantly different (p < 0.05) than the respective
monthly background temperatures. The largest concentration of significant differences occurs in the north-
ern regions from November to March.

3.2. AR Temperature Trends

In four of the five regions, we find statistically significant trends in the overall time series of cool‐season AR
temperature (Figures 2a–2e). The trends are positive in all regions, with magnitudes of warming between
0.69 and 1.65 °C over the 37‐year study period. The magnitude and statistical significance of warming
increases to the south, with the Southern and Central California regions exhibiting warming significant at
p < 0.01, Northern California at p = 0.03, Oregon at p = 0.09, and Washington at p = 0.15.

Trends in the seasonal‐scale AR temperature time series (Figure 2) could result from seasonal redistribution
of ARs within the seasonal temperature cycle (Figure 1a), if there was a relative increase in frequency in
warmer months and/or a relative decrease in frequency in cooler months. Although there has been a signif-
icant increase in March AR days in the Washington and Oregon regions (supporting information Table S2),
we find no significant changes in the other 28 month‐regions. Therefore, the results do not support a
seasonal redistribution.

In contrast, we find positive trends in monthly scale temperature trends in most month‐regions
(Figures 2f–2j), with varying magnitude of trends, and significance in select months and regions.
Specifically, the highest magnitudes of warming are in Southern California in January (2.19 °C),
Central California in March (2.18 °C), and Northern California in March (1.91 °C). March exhibits
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Figure 2. (a–e) Overall cool‐season mean (October–March) AR temperature time series (black dots) for each region
1980–2016. All AR event temperatures are displayed in the background (gray dots). Trend is calculated on the cool‐
season mean time series. Thick lines show the trend in cool‐season mean AR temperature, and colored trend lines denote
the statistical significance of the trend (red for p < 0.05, orange for p < 0.10, and gray for p > 0.10). Change over time
(Δ) reports the slope of the trendmultiplied by the number of years (37).N is the number of total AR events for that region.
All temperatures are averaged from 1000 to 750 hPa. (f–j) Change over time (Δ) of AR temperatures binned by month.
Colored bars signify statistical significance (red for p < 0.05, orange for p < 0.10, and gray for p > 0.10).

10.1029/2018JD029860Journal of Geophysical Research: Atmospheres

GONZALES ET AL. 8



statistically significant warming trends across the West Coast (p = 0.07 in Washington, p = 0.04 in
Oregon, p = 0.02 in Northern California, and p = 0.01 in Central California), with the exception of
Southern California (p = 0.17). November warming is robust in Oregon and Northern California (p =
0.10 and p = 0.05, respectively), and January warming is robust in Central California and Southern
California (p = 0.04 and p = 0.03, respectively). As with the warming in the overall time series
(Figures 2a–2e), the smallest monthly scale warming occurs in Washington (Figure 2f). The trend results
for each of the three reanalysis products are separately presented in supporting information Tables S3–S5.

We conduct a sensitivity test of the AR trends in Figure 2 by removing the years 2014 and 2015 when extre-
mely warm coastal SSTs were present (i.e., the period during which the Blob of warm SSTs was present across
the northeastern Pacific; Bond et al., 2015). This sensitivity test still yields statistically significant cool‐season
trends in Northern California, Central California, and Southern California, with significant trends in March
in Northern California, March in Central California, and October in Central California (supporting informa-
tion Table S6). Washington and Oregon show the greatest sensitivity to the presence of 2014 and 2015 in the
analysis, as none of the AR temperature trends in those two regions are statistically significant when these
years are removed (supporting information Table S6).

3.3. Comparison of AR Versus Background Temperature Trends
3.3.1. AR Tracks and Temperature
AR tracks generally follow a southwest‐to‐northeast trajectory over the Pacific (Figure 3a), consistent with
the IVT object tracks of Sellars et al. (2017) and the path of the Pacific storm track (e.g., Lora et al., 2017).
However, some ARs take a more meridional path, particularly those originating over the eastern tropical
Pacific (example track highlighted in Figure 3a). Our analysis shows that ARs making landfall in the
southwest U.S. often originate closer to the coast (example track highlighted in Figure 3a), consistent with
the recent AR trajectory analysis of Zhang and Villarini (2018). Some AR tracks with tropical origins in
the far West Pacific first travel westward—in the opposite direction of the prevailing midlatitude westerly
winds—before eventually recurving toward the northeast (example track highlighted in Figure 3a). This

Figure 3. (a) Tracks for all West Coast landfalling ARs. Tracks are generated from AR object centroid locations from genesis to landfall every 6 hr. Highlighted
tracks are selected to exemplify different track orientations: two relatively zonal tracks, one of which curves west before traveling east, and two relatively meri-
dional, one of which originates near the coast. (b) Total track density for every track occurrence from (a), gridded onto 3° × 3° grid. Gray dots denote the
weighted mean latitude position for all tracks at that particular longitude bin. Profiles on the right and the bottom denote zonal and meridional totals, respectively.
(c) Overall mean cool‐season AR track temperature from 1000 to 750 hPa at each 3° × 3°grid box for all AR track occurrences. Grid boxes more than 4° inland from
the coast are shown in gray. (d) Track centroid locations for each AR track that occurs in January, colored by eventual temperature at landfall.
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behavior is strongly suggestive of ARs resulting directly or indirectly from
the remnants of West Pacific tropical cyclones (e.g., Cordeira et al., 2013;
Hatchett, 2018).

Overall, mean AR track temperature over the North Pacific basin
(Figure 3c) varies by latitude, with temperatures exceeding 20 °C in the
tropics and falling below 5 °C across the North Pacific. Mean track tem-
perature also varies by longitude, with warmest temperatures in the
southwest Pacific and coolest in the northeast Pacific. The overall
southwest‐to‐northeast gradient in track temperatures (Figure 3c) resem-
bles the southwest‐to‐northeast trajectory taken by the majority of ARs
(Figures 3a and 3b). In addition, the north‐south temperature gradient
in mean AR landfall temperature (Figure 1a) is also evident in AR track
temperatures (Figure 3c).

The latitudinal dependence of AR temperature seen in the mean AR track
temperature is also seen in the individual AR point temperatures, with
ARs that pass over oceanic regions in the south having eventual landfall
temperatures that are generally warmer (Figure 3d). However, as illu-
strated in Figure 3d, the eventual AR temperature at landfall can vary
substantially even for tracks that pass in close proximity to each other.
(Note that Figure 3d only includes AR tracks that occur in January, so
the variability of track temperature is not due to the seasonal cycle.)
3.3.2. AR Track Density
The pattern of AR track density and its associated mean latitude positions
(Figure 3b) tend to follow the southwest‐to‐northeast pattern of AR track
orientation seen in Figure 3a (i.e., the positions increase in latitude as
longitude increases to the west). The most prominent exceptions occur
east of 220°W, where the mean latitude positions are displaced southward
due to the relative abundance of subtropical and tropical AR tracks.

Figure 4 demonstrates how the spatial distributions of AR tracks vary by
region of landfall, including variations in zonal and meridional density.
This variation arises partly because the highest track densities are found
between 220°W and 240°W—the longitudes closest to the ultimate
landfall locations (Figures 3a and 3b). As a result, in the eastern Pacific,
the curve of mean latitude position exhibits a southwest‐northeast, or
diagonal, orientation for the Washington and Oregon regions
(Figures 4a and 4b) and a relatively zonal orientation for the California
regions (Figures 4c–4e). However, the zonal distributions of track density
exhibit far less latitudinal variation between the regions—particularly for
the four northernmost regions—suggesting that West Coast ARs pass
through similar regions (and therefore regions of similar temperature)
prior to approaching landfall. The high density of tracks offshore of
Central California and Southern California could reflect the geometry of
the coastline, the relative abundance of shorter track ARs in these
domains, and/or regional circulation differences that influence the trajec-
tories of ARs as they approach the coast.

The spatial distribution of AR track density also varies through the seaso-
nal cycle (Figure 5), which may have implications for AR track tempera-
ture and associated trends. In particular, the mean latitude positions
migrate south as the season progresses. This seasonal progression is also
reflected in the zonal distributions of track density. October and
November exhibit the highest density of tracks in the tropical western
Pacific (Figures 5a and 5b), possibly corresponding to transitioning West

Figure 4. AR track density percentage by region of eventual landfall.
Density is calculated as in Figure 3b, but with each grid box total divided
by the total number of occurrences over the entire domain (denoted in
the lower right corner of each panel). As in Figure 3b, gray dots denote
weighted mean latitude position for all tracks at that particular longitude
bin. Right/bottom profiles denote zonal/meridional density, respectively.
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Pacific typhoons/tropical cyclones that result in warm ARs (Hatchett et al., 2018). February and March
exhibit the highest density of tracks in the subtropical eastern Pacific between the Hawaiian Islands and
North America (Figures 5e and 5f), coincident with the seasonal cycle of the subtropical branch of the
Pacific jet, which extends farther southeastward across the basin later in the season (e.g., Neelin et al.,
2013; Swain et al., 2016).

3.4. Trends in AR Landfall Temperature, AR Track Temperature, Coastal Temperature, and
Regional Background Temperature

We compare AR temperature trends at landfall (ARlandfall) with along‐track AR temperature trends
(ARtrack), monthly mean background temperature trends at the landfall region (BKlandfall), and AR tempera-
ture trends over the ocean adjacent to the landfall region (ARcoast). Figure 6 shows the magnitudes and sig-
nificance levels of each trend type for each month and landfall region, along with the proximity of the
ARtrack, ARcoast, and BKlandfall trend magnitudes to the ARlandfall trend magnitude.

BKlandfall trends are mostly positive (Figure 6). In total, of the 30 BKlandfall trends, 5 exhibit statistically
significant warming. In January, BKlandfall trends are positive—and of higher magnitude than ARlandfall

trends—across all regions. In contrast, December BKlandfall trends are close to zero across all regions.

ARcoast trends are consistently similar to ARlandfall trends, regardless if either have exhibited significant
warming, suggesting that the ocean influences air temperature trends in ARs prior to landfall. At the same
time, ARcoast trend magnitudes are almost always less than ARlandfall trends (in 28 of 30 instances), even if
slightly, confirming that the air in ARs over the ocean has warmed less than the air in ARs over land.

ARtrack trend magnitudes are generally smaller than ARlandfall trend magnitudes, and there is only one
instance of a statistically significant ARtrack trend (Figure 6). The Southern California ARtrack trends exhibit
the greatest variability across the seasonal cycle. For the other four regions, there is a general decrease in
ARtrack trend magnitude as the season progresses from October to February. In March, ARtrack trend
magnitude is near zero or negative across all regions (Figure 6), despite the robust warming of ARlandfall

temperatures (Figure 2).

Using our metric of trend proximity (see section 2; Table S7), we find three instances where the ARlandfall

trend is significantly closest to the ARcoast trend and two instances where the ARlandfall trend is

Figure 5. AR track density percentage as in Figure 4, but by month of the cool season. For each month, tracks from all landfall regions are included.
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significantly closest to the BKlandfall trend (Figure 6). The two instances
where the ARlandfall trend is closer to the BKlandfall trend occur in
January in Central California and Southern California, and in both cases
the ARlandfall warming is of higher magnitude than the other trend types.
In March, when there is strong ARlandfall warming, ARlandfall trend
magnitudes are near ARcoast and/or BKlandfall trends across the regions.
Also in March, the Washington ARlandfall trend demonstrates ARlandfall

warming of higher magnitude than any of the other trend types.

Our motivation for comparing the various trends is to disentangle the
causes of ARlandfall warming. Overall, the results exhibit variation depend-
ing on region andmonth. The broad patterns of closest trend types suggest
that ARlandfall trends generally tend to be either dominated by strong
BKlandfall or ARcoast warming or by a blend of ARtrack, BKlandfall, and
ARcoast trends.

4. Discussion
4.1. AR Temperature Climatology

This study provides the first climatology of U.S. West Coast cool season
AR temperatures. We expand upon previous analyses of AR temperature
by evaluating temperatures integrated through the entire lower tropo-
spheric column—rather than using surface air temperature, which can
exhibit greater variance due to local geographic or microclimatic effects.
We find that climatological AR temperatures are warmer than back-
ground temperatures in the Washington, Oregon, and Northern
California regions, consistent with a previous assessment of California
mean surface temperature during AR events (Dettinger, 2011).
However, we find that mean AR temperatures in Central California and
Southern California tend to be similar or even slightly cooler than
background temperatures.

The narrower range in mean AR temperature values (~7 °C; Figure 1a)
compared to background values (~9 °C; Figure 1b) suggests common
source regions, pathways, moisture sources, and/or processes over the
ocean that influence resultant AR temperature at landfall. Figure 3a sup-
ports this interpretation, as AR tracks for different landfall regions share
some similar source regions and path trajectories, although that similarity
varies by latitude. Washington and Oregon AR temperatures are consis-
tently warmer than the background, suggesting that Washington‐ and
Oregon‐bound ARs advect warmer temperatures from the ocean and/or
southern latitudes. Similarly, for most of the year, Central California
and Southern California exhibit AR temperatures that are similar to or
cooler than the background regional temperature, which is consistent
with the tracks in Figures 3a and 4, which often originate closer to the
region of landfall. Additionally, in contrast with generally cool back-
ground conditions in the northern regions, the background temperature
in the southern regions tends to be warmer and therefore closer to
AR temperature.

4.2. AR Temperature Trends

We find that AR temperatures at landfall have warmed across all U.S.
West Coast regions during the 1980–2016 period, with statistically
significant warming over all regions except Washington. The magnitude
of cool‐season warming is substantial, ranging from 0.69 to 1.65 °C of

Figure 6. For each region, monthly trends in AR temperature at the
landfall destination (ARlandfall), AR temperature over the AR tracks
(ARtrack), AR temperature over the prelandfall coastal regions (ARcoast),
and background temperature at the landfall destination (BKlandfall).
ARlandfall trends are identical to those in Figures 2f–2j. Significance of trend
is denoted by colored symbols (orange for p < 0.10 and red for p < 0.05).
Smaller symbols in the lower gray portion for each month denote which
trend (ARtrack, ARcoast, or BKlandfall) is closest to ARlandfall (see section 2).
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change over the 37‐year period. At the monthly scale, the magnitude of warming in some months/regions is
>2 °C (specifically Southern California in January and Central California in March), which exceeds that of
late‐century projections in previous work analyzing surface temperature associated with ARs (Dettinger,
2011). Depending on regional characteristics (e.g., latitude and topography), this magnitude of AR warming
may have substantial implications for water resources and flood risk.

Globally, change in precipitation phase from snow to rain occurs between −2 and +4 °C over land
(Dai, 2008), although the temperature range for that transition may be lower for our study regions (e.g.,
−2 to +2 °C in the Pacific Northwest; Nolin & Daly, 2006). Although the monthly mean temperature of
West Coast landfalling ARs exhibits a range of 3 to 13 °C (Figure 1), multiple regions (Washington,
Oregon, and Northern California) exhibit individual AR‐mean temperatures close to 0 °C (gray dots in
Figures 2a–2c), and many more events likely have local temperatures at higher elevations that are near
0 °C. The fact that AR temperatures are often close to freezing indicates that local AR precipitation is
frequently near the threshold for transitioning from snow to rain, and thus may be sensitive to even slight
temperature increases. It has already been observed that for all western U.S. cool‐season precipitation, the
fraction of precipitation falling as snow has declined due to historical warming (Knowles et al., 2006;
Safeeq et al., 2016). Future analysis will focus on directly assessing the contribution of AR temperature
trends to historical snow trends across the West Coast regions.

The long‐term warming of landfalling ARs is not distributed evenly across the seasonal cycle. The most pro-
nounced trends occur in March, while the least robust trends occur in December and February. Further
investigation is required to understand the durability and underlying causes of this seasonal asymmetry.

The seasonality of AR warming can substantially affect the risk of associated hydrometeorological impacts
by shifting the rain/snow balance, the likelihood of rain on snow events, and the timing and intensity of
subsequent runoff. For instance, warming of January ARs (Figures 2i and 2j) could be especially relevant
for snowpack accumulation—both because the climatological peak in California AR frequency occurs in
January/February (Mundhenk et al., 2016) and because these months are relatively cool overall
(Figure 1). In contrast, rain‐on‐snow hazards may be exacerbated by late‐season AR warming, as these
hazards tend to result from anomalously warm andmoist ARs, particularly toward the end of the cool season
(Guan et al., 2016). Thus, in regions with substantial late winter snowpack, the robust increase of March AR
temperatures (Figure 2) could increase rain‐on‐snow flood risk, provided that the AR warming results in a
decreased snow‐to‐rain ratio. Even without a specific increase of rain‐on‐snow hazards, the strong March
AR warming is a point of concern for water resources, as April 1 is considered the canonical transition
between snow accumulation and decline (e.g., Bohr & Aguado, 2001; Kapnick & Hall, 2012; Mote
et al., 2018).

Interpretations and implications of our findings may be sensitive to the precise magnitudes and robustness
of the AR warming trends. Therefore, we note three primary sources of uncertainty in the AR trend analysis:

Length of time series. Our analysis is limited to satellite‐era ARs, meaning that we are analyzing trends
across 37 years of data. The limited length of the time series may result in spurious trends due to the potential
for outliers to disproportionately influence the trend quantification, particularly in months with relatively
fewer ARs (supporting information Figure S2). Therefore, we advise readers to interpret the trend magni-
tudes and p values with caution.

Differences in reanalysis products. Differences in data assimilation and atmospheric models can
create differences in historical trends in different reanalyses (e.g., Trenberth et al., 2005). In addition, an
IVT anomaly object at a particular time stampmight exist inMERRA‐2 but not ERA‐I, or vice‐versa. We thus
use an IVT threshold for AR presence detection at individual grid boxes in the reanalyses as described in
section 2. However, differences in the historical temperature trends in any one of the reanalysis products
may have impacted our aggregated trend results. Furthermore, we note that we only used three reanalysis
products. Future work could expand the analysis to include additional reanalyses, as well as GCM simula-
tions of the historical period.

AR detection algorithm. As outlined in Shields et al. (2018), algorithms for detecting AR presence use
either absolute or relative vapor transport thresholds. Further, relative thresholds of IVT have been calcu-
lated from both anomalies (e.g., MBM16; Gorodetskaya et al., 2014; Shields & Kiehl, 2016a) and percentiles
(e.g., Brands et al., 2016; Guan & Waliser, 2015; Lavers et al., 2012). The AR catalog based on the MBM16
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algorithm defines ARs as anomalous IVT relative to the time of year and location, which is appropriate for
the spatial scope of our analysis, as AR frequency along the West Coast is seasonally and latitudinally vari-
able (Mundhenk et al., 2016). However, testing the robustness of our results to the AR detection algorithm is
an important priority for future research.

4.3. Sources of AR Temperature Trends

We have quantified spatial distributions of AR tracks and AR temperatures across the North Pacific basin.
These temperature and track density results demonstrate spatial variation in mean AR track temperature
across the North Pacific, and spatial and seasonal variation in the locations of tracks across regions of
landfall. These variations highlight that AR temperature trends could be influenced by a number of factors
relating to the AR paths and/or thermodynamic environments, motivating further understanding of AR
temperature evolution.

The proximity of ARcoast to ARlandfall trend magnitudes suggests that the anomalously warm region of SSTs
known as the Blob (Bond et al., 2015) may have played a role in the warming of ARlandfall trends (Figure 2),
as the Blob was centralized off the PNW coast in the Gulf of Alaska (Bond et al., 2015; Hu et al., 2017). This
apparent sensitivity to near‐coastal SSTs in the Pacific Northwest is noteworthy given recent research
suggesting that climate change has substantially increased the likelihood of such extremely warm regional
SSTs (Funk et al. 2014; Frölicher et al., 2018) and that marine heat waves of similar or greater magnitude will
likely occur with greater frequency in the future (Di Lorenzo & Mantua, 2016). The trend comparison in
Figure 6 broadly suggests that near‐coastal environmental factors—including coastal SSTs and background
temperatures—have more influence on ARlandfall temperatures than do ARtrack temperatures.

Our trend comparison suggests that neither BKlandfall, ARtrack, nor ARcoast trends can solely account for all
ARlandfall trends. This ambiguity is important for future projections of AR temperature, as a null hypothesis
could be to project AR landfall trends as scaling with the background regional temperature trends. However,
our results suggest greater complexity that varies by region and season. Most of the monthly scale ARlandfall

trends fall between the respective BKlandfall trend and the respective ARcoast or ARtrack trend. The intermedi-
ate trend magnitudes suggest a combination of strong local warming near the coast or over land, and modest
remote warming over ocean.

These results suggest a need for a more nuanced understanding of AR temperature evolution from genesis to
landfall. Further research is needed that investigates the extent to which AR landfall temperatures are influ-
enced by prelandfall characteristics of the AR and background characteristics of the landfall environment.
One relevant aspect of ARs for understanding their temperature evolution is that they source moisture both
locally and remotely. The majority of winter (DJF) moisture comes from the Northeast Pacific (Nusbaumer
& Noone, 2018), yet a number of case studies have demonstrated examples of both large‐scale advection and
local moisture convergence as the dominant mechanism (e.g., Dacre et al., 2015; Sodemann & Stohl, 2013).
Our results (Figure 6) likewise suggest that AR temperature evolution varies across the AR's lifespan,
depending on the season and region of eventual landfall. Therefore, we emphasize that there may be a
certain subset of ARs that are subject to different thermodynamic influences—especially those that are char-
acterized by a strong tropical/subtropical advective component (e.g., Bao et al., 2006). Furthermore, there
may be important three‐dimensional thermodynamic processes (e.g., related to vertical temperature struc-
ture) that influence the freezing altitude and related downstream impacts. In order to project AR tempera-
ture changes and their associated impacts in the future climate, it will be important to use tools that can
resolve AR processes at a sufficiently high spatial and temporal scale (e.g., Leung & Qian, 2009; Swain
et al., 2015), particularly if future ARs exhibit different dynamic and thermodynamic characteristics than
historical ARs.

5. Conclusions

We report substantial warming in landfalling U.S. West Coast atmospheric rivers from 1980 to 2016. Our
findings have implications for future trends in AR temperatures, both on the U.S. West Coast and more
broadly for other regions of AR landfall. The magnitudes of monthly scale warming (>2 °C of warming in
some months/regions), as well as the seasonal asymmetry of these trends, carry important implications
for flood risk and water storage—which are both sensitive to the temperature threshold for the snow‐to‐
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rain transition. In some regions and months, observed warming of ARs identified in this study exceeds
climate model projections for late‐century warming of AR surface temperatures documented in previous
work. Our study also identifies variable influence of trends in along‐track temperatures, coastal SSTs, and
background regional temperatures on landfalling AR temperature trends. We find that near‐coastal environ-
mental factors (coastal SSTs and background temperatures) have scaled most closely with landfalling AR
trends. Given the region's reliance on ARs for water supply and vulnerability to AR‐related hazards, it will
be important to further understand the causes of AR warming trends, their regional and seasonal complex-
ities, and whether such trends are likely to persist in the future.
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