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ABSTRACT

The spatial extent of an extreme precipitation event can be important for a basin’s hydrologic response and

subsequent flood risk, and may yield insights into underlying atmospheric processes. Using a relaxed moving-

neighborhood approach, we develop indicator semivariograms based on precipitation records from the

Global Historical Climatology Network–Daily (GHCN-D) station network to directly quantify the clima-

tological length scales of extreme daily precipitation over the United States during 1965–2014. We find that

the length scales of extreme (90th percentile) daily precipitation events vary both regionally and seasonally.

Over the eastern half of the United States, daily extreme precipitation length scales reach 400 km during the

winter months, but are approximately half as large during the summer months. The Northwest region, on the

other hand, exhibits little seasonal variation, with extreme precipitation length scales of approximately

150 km throughout the year. By leveraging in situ station measurements, our study avoids some of the un-

certainties associated with satellite or interpolated precipitation data, and provides the longest climatological

assessment of length scales of extreme daily precipitation over the United States to date. Although the length

scales that we calculate can be sensitive to station density, neighborhood size, and neighborhood relaxation,

we find that the interregional and interseasonal differences in length scales are relatively robust. Our method

could be extended to quantify changes in the spatial extent of extreme daily precipitation in the recent past,

and to investigate the underlying causes of any changes that are detected.

1. Introduction

Extreme precipitation events tend to cause high sur-

face runoff, and can subsequently lead to flooding that is

capable of inflicting extensive economic, societal, and

ecological damages. In 2017 alone, the United States

experienced four major flooding events from extreme

precipitation, resulting in 211 deaths and over $180 billion

(U.S. dollars) in damages (NOAA/NCEI 2017). Typi-

cally, extreme precipitation events are of relatively short

duration (lasting from a few hours to a few days) but

produce damages comparable to those resulting from

long-duration droughts (which often last a year ormore).

Additionally, recovery can be slow and costly, as evi-

denced by recent examples such as the 2013 Boulder

floods (Gochis et al. 2015) and the 2016 Louisiana floods

(van der Wiel et al. 2017). Understanding the spatial

characteristics of these extreme precipitation events is

important not only because of their considerable socie-

tal impacts, but also because these characteristics have
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been changing in recent decades as atmospheric tem-

peratures increase (O’Gorman 2015).

The frequency and intensity of extreme wet events

have been increasing across much of the globe (IPCC

2012), including over much of the United States during

the past half century (DeGaetano 2009; Pryor et al. 2009;

Gleason et al. 2008). In some cases, these changes in the

frequency and/or intensity have been attributed to in-

creasing greenhouse gas concentrations (Min et al. 2013;

Diffenbaugh et al. 2017; Cohen et al. 2014). The ob-

served increase in the intensity of extreme wet events

has been partly attributed to the thermodynamic con-

tribution of increasing temperatures, and in some cases

partly attributed to changes in atmospheric circulation

(Trenberth et al. 2003; Trenberth 2011; O’Gorman 2015;

Diffenbaugh et al. 2017). Accordingly, as atmospheric

temperatures continue to rise, the frequency and in-

tensity of extreme wet events are expected to change

further in the future, although such changes are likely to

manifest nonuniformly in space and time (Diffenbaugh

et al. 2005; Gleason et al. 2008; Singh et al. 2013; Trapp

et al. 2007).

Studies have also started to investigate the effect of

rising temperatures on the spatial characteristics of pre-

cipitation. For example, Wasko et al. (2016) found that

increasing temperatures reduce the spatial extents of

extreme rain storms in Australia. Similarly, Chang et al.

(2016) and Guinard et al. (2015) found that higher tem-

peratures reduce the spatial extent of rainstorms over the

United States. However, other studies, such as that of

Dwyer and O’Gorman (2017), found inconclusive results

when assessing the change in zonal length scale of pre-

cipitation events in the tropics. Although these studies

(and others) have already begun to quantify changes in

the spatial extent of precipitation in response to in-

creasing temperatures, a robust assessment of the long-

term historical climatology of spatial extent of extreme

precipitation has not yet been developed.

A key challenge in developing such a climatological

assessment is the brevity and uncertainty of pixelated or

gridded datasets, including those derived from ground-

based weather radar, space-based satellite precipita-

tion records, and statistically (e.g., Daymet; Thornton

et al. 1997) or dynamically (e.g., reanalysis) interpolated

datasets. Decadal variability of the climate system can

induce apparent (but spurious) long-term trends (Deser

et al. 2014, 2012; Thompson et al. 2015; Li et al. 2017;

Endo et al. 2017; Hawkins et al. 2016)—and/or mask

trends arising from changes in radiative forcing—in

short (;30 yr) radar and/or satellite-derived observa-

tions (Schneider et al. 2013). These assessments can be

further affected by the reported overestimation of the

frequency of extreme precipitation in satellite datawhen

compared to ground and radar measurements (Mehran

and Aghakouchak 2014; Aghakouchak et al. 2011). Al-

though station-based interpolated datasets can provide

longer periods of record, they consistently un-

derestimate extreme precipitation, especially over re-

gions with sparser ground measurements (Sun and

Barros 2010; Behnke et al. 2016).

Although measurement uncertainties in precipitation

gauge data have been reported in multiple studies

(Rasmussen et al. 2012; Sieck et al. 2007; Tokay et al.

2010; Liu et al. 2013), assessing the characteristics of ex-

treme precipitation using in situ data directly overcomes

the need for interpolation methods to estimate extreme

precipitation. Additionally, station datasets provide a

much longer period of record than is available from sat-

ellites or radar, allowing robust assessments of long-term

trends in the characteristics of extreme precipitation.

Our objective in the present study is to infer the spa-

tial extent of extreme daily precipitation using station

data, thereby overcoming the limitations of gridded

datasets. Given that we cannot assume that precipitation

varies smoothly between adjacent stations, we quantify

the length scale of extreme daily precipitation (rather

than the size of continuous objects). Our framework,

which we describe below, employs indicator semivario-

grams to infer the length scale of extreme daily pre-

cipitation using the Global Historical Climatology

Network–Daily (GHCN-D) dataset of U.S. stations

(Menne et al. 2012). We use our approach to identify

regional and seasonal variations in the climatological

length scales for the 1965–2014 period. Additionally, we

assess the sensitivity of those variations to our method-

ological choices.

2. Data

We use the GHCN-D station dataset, which contains

daily precipitation records since 1861. To balance the

need for a set of stations that has continuous data

availability with the need for a period of record that is

sufficiently long for climatological assessment, we focus

our analysis on the period from 1965 to 2014. Over

North America, 4512 stations in the GHCN-D dataset

have (partially intermittent) records that start by 1965

and continue until or past 2014. These 4512 stations are

shown in Fig. 1a. Across all stations, more than half of

the observations used are based on 24-h accumulation

periods recorded between 0700 and 0800 local time

(LT), while 15% are recorded at 1800 LT, and approxi-

mately a tenth are recorded at midnight LT.

We first find all daily precipitation values from 1965 to

2014 that are greater than or equal to 1mmday21 for

each station and each calendar month. We then define
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the 90th percentile value of these precipitation values as

the respective extreme precipitation threshold for each

station and each calendar month. We summarize these

90th percentile values in 3-month (or seasonal) averages

in Fig. 2, using December–February (DJF) for winter,

March–May (MAM) for spring, June–August (JJA) for

summer, and September–November (SON) for autumn.

Using this percentile threshold value for each month

and each station, we create a binary, or indicator, ex-

treme event dataset (hereafter ‘‘p90’’) for the whole

period of 1965–2014, where stations that have a daily

precipitation value equal to or above the corresponding

monthly 90th percentile threshold are set equal to 1, and

stations that have a daily precipitation value less than

that threshold are set equal to 0. Stations that have no

recorded data on a given day are eliminated from the

binary dataset for that day.

3. Methods

a. Overview of methodology

We use indicator semivariograms to quantify the

length scale of extreme precipitation using our binary

p90 dataset. Indicator semivariograms have been used in

previous studies to spatially interpolate the probability

of the presence of a threshold variable using indicator

kriging (e.g., Berezowski et al. 2016; Goovaerts et al.

2016; Haberlandt 2007). However, in our study, we use

indicator semivariogram methods to directly compute

the length scales of extreme precipitation, without

kriging the binary variable. The indicator semivario-

gram quantifies the squared difference between the

values of two data points as a function of the separation

distance between those points. By calculating the in-

dicator variogram for multiple pairs of stations (as a

function of their separation distance) in a given region

and time, we can find the distance at which stations with

p90 values are no longer substantially correlated in that

region and time period. We use this distance to quantify

the length scale of p90 precipitation for that given region

and time.

As shown in previous studies using radar, satellite, and

climate model data, length scales of precipitation can

exhibit substantial regional variation over the United

States (Guinard et al. 2015; Dwyer and O’Gorman 2017;

Chang et al. 2016; Kursinski and Mullen 2008). To

ensure that we capture the nonstationarity of spatial

FIG. 1. (a) Locations and NCEI regions for GHCN-D stations used in the analysis. Stations shown have been

recording data between 1965 and 2014. The number of stations in each region is in parentheses. (b) The number of

stations used in each 500-km radius neighborhood for p90 semivariogram analysis. (c) Frequency distribution of the

number of stations used in 500-km radius neighborhoods found in each region.
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characteristics, we directly address regional differences

in length scales by using a moving neighborhood ap-

proach similar to that developed by Haas (1990). Haas

(1990) estimated local semivariogram parameters for

sulfate deposition data by using neighborhoods of sta-

tions centered around locations of interest in order to

provide kriging estimates, and found that this method

provides a more accurate representation of the semi-

variogram structure than when using global semivario-

gram parameters. The moving neighborhood approach

has also been used extensively to estimate local semi-

variogram parameter sets for spatial prediction (e.g.,

Lloyd 2005, 2010; Tadić et al. 2015), resulting in de-

creased prediction error relative to the use of a global

semivariogram parameter set.

However, when using a moving neighborhood ap-

proach, the number of observations within a neighbor-

hood or the size of the neighborhood must first be

established. While most studies use a single neighbor-

hood size (or density) to estimate local semivariogram

parameters based on well-known physical traits of the

variable of interest (e.g., Alkhaled et al. 2008; Hammerling

et al. 2012; Tadić et al. 2015), other studies quantify

the effect of the number of observations within a

neighborhood on the errors of estimation. More spe-

cifically, Lloyd (2005) found that a larger number of

observations within a neighborhood produced smaller

errors for monthly precipitation estimation over the

United Kingdom. Likewise, Oyler et al. (2015) found

that minimum and maximum temperatures can be lo-

cally estimated with little error over the United States

using ;80 stations per neighborhood. In our study, we

test the sensitivity of our results to the number of ob-

servations in each neighborhood, and also to the size of

the neighborhood.

Similar to Alkhaled et al. (2008) and Hammerling

et al. (2012), we also ‘‘relax’’ the boundaries of a

neighborhood in order to account for larger scales of

variability, and to prevent unnatural cutoffs of extreme

precipitation areas when calculating the spatial extent of

extreme precipitation over a certain location. We relax

the neighborhood by allowing stations outside of the

FIG. 2. Monthly 90th percentile of daily precipitation from 1965 to 2014 for each station averaged over each

season. For each month, the 90th percentile of daily precipitation greater or equal to 1mm over 1965–2014 is found

for each station. The monthly 90th percentile value is used to create the p90 dataset (e.g., Fig. 3), but for this figure

we show the seasonal average of the 90th percentile value of each month at each station.
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boundary to be included as one member of a station pair

in our semivariogram calculation. We also quantify the

effect of this neighborhood relaxation on our calcula-

tion of the spatial extent, and assess whether a relaxed

neighborhood reduces the sensitivity to different neigh-

borhood sizes.

The theory and calculation of indicator semivario-

grams is described in detail by Goovaerts (1997) and

applied in many studies to understand the spatial

structure of environmental variables (e.g., Berezowski

et al. 2016; Goovaerts et al. 2016; Haberlandt 2007). In

the following subsections, we first describe the methods

for selecting the data used in the calculation of indicator

semivariograms (including the moving neighborhood

method) so that we capture any seasonal and regional

variations in p90 length scales. We then detail the use of

raw, experimental, and theoretical variograms to quan-

tify p90 precipitation length scales.

b. Seasonal and regional considerations

To define the length scale of extreme precipitation

for a station, we first delineate a 500-km-radius neigh-

borhood around that station. Using a 500-km neigh-

borhood allows us to capture the spatial heterogeneity

of extreme daily precipitation over different regions.We

then ensure that there are at least 20 stations within that

500-km neighborhood. (A total of eight stations are

eliminated because their 500-km neighborhoods en-

compass fewer than 20 stations.)

Because we are interested in the climatological length

scale of p90 precipitation for each season, we calculate

the raw semivariogram for the days in which at least

10% of the stations in an individual neighborhood

show a p90 event in a season (hereafter, ‘‘p90 days’’).

Given that our threshold for an extreme event is the 90th

percentile, this 10% restriction ensures that our analysis

only encompasses days that exceed the number of events

expected to occur at random within each neighborhood.

Because of spatial correlations in our p90 dataset, ap-

proximately 2%–12% of days in each season over the

whole period (1965–2014) are selected as p90 days (see

Fig. S1 in the online supplemental material). JJA shows

the largest percentage of days eliminated by this crite-

rion, especially in the eastern half of the United States.

Interestingly, for neighborhoods on the Pacific coast,

fewer than 50% of days exhibit at least one station with

p90 precipitation (Fig. S1).

For raw semivariogram calculations, we only use pairs

of stations that include at least one station with a binary

value of 1 on a given day. By using only pairs of stations

that both meet the threshold (hereafter, ‘‘1–1 pairs’’;

red–red pairs in Fig. 3a) or for which one meets

the threshold and one does not (hereafter, ‘‘1–0 pairs’’;

red–black in Fig. 3a), we ensure that pairs of two non-

threshold stations (hereafter, ‘‘0–0 pairs’’; black–black

in Fig. 3a) are not included in our characterization of the

length scale of p90 daily precipitation. To implement our

relaxation technique, we also use 1–1 and 1–0 pairs that

are partly in the neighborhood (i.e., with one station

inside the neighborhood and the other station outside

the neighborhood; red–pink, red–gray, and black–pink

pairs in Fig. 3a) to capture length scales that are repre-

sentative of the neighborhood but that may be longer

than the neighborhood dimensions. Pairs of stations that

fall completely outside the neighborhood are excluded

(pink–pink, gray–gray, and pink–gray pairs in Fig. 3a).

All raw semivariogram calculations from all pairs on all

p90 days are weighted equally.

To assess regional variations in the length scales, we

summarize our results using nine U.S. regions, as de-

fined by the National Centers for Environmental In-

formation (NCEI) (Karl and Koss 1984). The NCEI

regions are shown in Fig. 1a. (Note that there are several

stations in Mexico and Canada that are included in our

single-station analysis but that are not included in any of

the regional summaries.) To assess the statistical sig-

nificance of regional differences in length scales within

each season we use the Mann–WhitneyU test. To assess

the statistical significance of the seasonal variations in each

region, we use the pairedWilcoxon signed-rank test, which

is a nonparametric paired difference test (McDonald

2009). We report the p values of the tests, where the

p values have been adjusted using the Bonferroni method,

which penalizes p values when conducting multiple tests

using the same sample (Wright 1992)—that is, 6 intra-

seasonal comparisons per region and 36 intraregional

comparisons per season.

c. Raw and experimental semivariograms

On any given day, the raw semivariogram value can be

calculated for a pair of selected stations using the 500-km

relaxed moving neighborhood around a station for dis-

tances up to 500km for p90. The raw semivariogram is

calculated as shown in Eq. (1) and in Fig. 3b:

g(h)5 0:53 [Z(x)2Z(x1 h)]2, (1)

where h is the distance between two stations, Z(x) is the

p90 event value at a station at location x, andZ(x1 h) is

the p90 event value at a station that is at distance h away

from x. Because the p90 event value, Z(x), is equal to 1

when a station’s precipitation exceeds or equals the p90

threshold and is equal to 0 when it falls below the

threshold, the semivariogram g(h) has only two possible

outcomes: 0 when two stations have the sameZ(x) value

on a given day, and 0.5 when two stations have different
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Z(x) values on the same day. Because we are only using

pairs of stations that have at least one Z(x) value of 1

(i.e., 1–1 or 1–0 pairs, or red–red, red–black, red–pink,

red–gray, and black–pink pairs in Fig. 3a), all raw

semivariogram values of 0 are calculated from 1–1 pairs

and all values of 0.5 are calculated from 1–0 pairs.

Raw semivariogram values are calculated for p90 days

in each season and for each station, and then grouped

FIG. 3. Illustration of method for SON climatology range calculation for a station in Colorado using the 133 p90 days selected in SON

over 1965–2014 for the station (as described in section 3). (a) The p90 station data for days 1, 2, 3, and 133. The stations within the

neighborhood are shown in red and black and stations outside the neighborhood are shown in gray and pink. Stations that exceed the p90

threshold for these particular days are in red and pink, and stations that are below the p90 threshold are shown in black and gray. (b) Raw

indicator semivariograms for days 1, 2, 3, and 133. The number of pairs that have a semivariogram value of 0 (1–1 pairs in purple) or 0.5 (1–

0 pairs in blue) in each separation distance interval (x axis). (c) The sum of all raw indicator semivariograms over 133 selected days in SON

at 0 or 0.5 (purple bars for 1–1 pairs and blue bars for 1–0 pairs). To calculate the experimental semivariogram (black circles), all

semivariogram values in each separation distance interval (delineated by gray dashed vertical lines) are averaged to obtain one semi-

variogram value for the center of the distance interval. The exponential semivariogram (gray line) is fit to the experimental semivariogram

as described in section 3, and the practical range, or length scale (vertical black line and arrow), is retrieved from the fitted ex-

ponential semivariogram model.
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into 20 equally spaced intervals i of separation distances

h (e.g., SON Station 599; Fig. 3b). We then calculate the

experimental semivariogram g(hi) by taking themean of

raw semivariogram values in each interval i (black cir-

cles in Fig. 3c). In the case of raw indicator semivario-

gram values, we calculate a simple ratio between the

number of 1–1 pairs (N1–1,i) and the number of 1–0 pairs

(N1–0,i) of stations in each interval:

g(h
i
)5 0:5

"
N

120,i

N
120,i

1N
121,i

#
. (2)

The experimental semivariogram (Fig. 3c; black circles)

increases with greater separation distance and eventu-

ally asymptotes at a value close to 0.5. The shape of the

relationship shows that stations farther apart are less

likely to have p90 precipitation on the same day, meaning

that there are more 1–1 pairs at smaller separation dis-

tances, while the number of 1–0 pairs mostly increases

with larger distances, as expected.

d. Length scale of extreme precipitation calculated
from fitted semivariograms

To characterize the relationship between the experi-

mental semivariogram and the distance h between sta-

tion pairs we fit a theoretical semivariogram to the

experimental semivariogram. Various models of semi-

variograms are commonly used in the geostatistical lit-

erature (Chiles and Delfiner 2012). Following visual

inspection of the experimental semivariograms and

recommendations from previous studies (e.g., Berndt

et al. 2014; Western et al. 1998), we fit the exponential

model for p90 experimental semivariograms as defined

in Eq. (3):

g
exp

(h)5

8><
>:

c1 b

�
12 exp

�
2
3h

a

��
, h. 0

0, h5 0

, (3)

where c is the nugget, b is the partial sill, and a is the

practical range of the semivariogram. The nugget c re-

flects measurement errors or microscale variability. The

partial sill b represents the asymptotic value of the ex-

ponential semivariogram at a large separation distance.

In this study, we focus on the practical range a, with

which we represent the length scale of p90 daily pre-

cipitation (Goovaerts 1997; Haberlandt 2007; Fig. 3c).

To fit exponential semivariograms to the experimental

semivariograms calculated for each neighborhood during

each season, we use the variofit function from the geoR

package (Ribeiro and Diggle 2016) in R (R Core Team

2015). By using this function, we can automatically fit

exponential semivariograms to the experimental semi-

variograms from all seasons and all neighborhoods.

Before presenting the results for the climatological

length scale of extreme precipitation, we assess the re-

sults for two selected days for one station in Colorado,

with the aim of assessing the implications of the relaxed

moving neighborhood. For 10 September 2002, the

calculated length scale was 242 km. For 10 September

2013, the calculated length scale was 73km. The 2013

date indeed had much smaller clusters of stations with

extreme precipitation, covering a smaller area, while the

examined date in 2002 had a larger cluster of stations

with extreme precipitation (see Fig. S2 for more details).

The large extreme rainfall cluster centered over Illinois,

Missouri, and Iowa in 2013 shows the importance of

constraining the raw semivariogram calculations to pairs

of stations with at least one station within a neighbor-

hood, in order to eliminate any influences from distinct

precipitation areas. In contrast, 2002 shows the impor-

tance of relaxing the neighborhood to include stations

exhibiting p90 precipitation outside of the edge of the

neighborhood, and to prevent an arbitrary, unnatural

cutoff from the p90 stations located inside the neigh-

borhood (e.g., see the northern edge of the neighbor-

hood in Fig. S2a).

e. Sensitivity tests

We test the sensitivity of our results to a number of

our methodological choices. First, to test the impact

of the ‘‘relaxed’’ method, we recalculate the semi-

variograms using a restricted neighborhood, i.e., only

using 1–1 and 1–0 pairs of stations within the neigh-

borhood (red–red and red–black pairs in Fig. 3a). Sec-

ond, to understand the effect of the neighborhood size,

we recalculate the semivariograms using a 300-km

neighborhood radius and a 700-km neighborhood ra-

dius, for both the relaxed and restricted neighborhood

method. Last, we test the sensitivity of the number of

stations per 500-km neighborhood by recalculating the

semivariogram using a uniform number of 100, 200, and

300 stations within each neighborhood. For stations with

neighborhoods that encompass greater than 100, 200, or

300 stations, we randomly subselect 100, 200, or 300

stations without replacement. We do not assess the

sensitivity of the length scales for stations that originally

had fewer than 100, 200, or 300 stations in their neigh-

borhood.When selecting pairs of stations for calculating

the raw semivariogram, stations outside the neighbor-

hood remain intact. As a reference, 1%, 7%, and 30%of

stations have fewer than 100, 200, and 300 stations, re-

spectively, in their 500-km neighborhood.
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4. Results

a. Seasonal length scale of p90 precipitation

We calculate the seasonal climatology of the length

scale extracted from the fitted semivariograms for ex-

treme precipitation across the United States using a

500-km relaxed neighborhood (Fig. 4a).We find that the

winter months (DJF) generally have the longest length

scales of extreme precipitation and the summer months

(JJA) generally have the shortest (Fig. 4a). Addition-

ally, the longest length scales generally occur in the

Central, East North Central, Northeast, South, and

West regions, while the smallest occur across the

Northwest, Southwest, and West North Central regions.

We find that the Central region has the longest median

length scale in DJF, MAM, and SON, while the West

region has the longest median length scale in JJA

(Figs. 4 and 5a).

Variation in length scales between regions is highest

during winter, and subtler during summer (Fig. 5a), al-

though the differences in length scales between regions

are statistically significant in most cases (p , 0.01). In

DJF, the largest regional differences are between the

Northwest region and the South, Central, and East

FIG. 4. (a) The climatological length scale (km) for each season over p90 days 1965–2014 for daily p90 extreme

rainfall events for all neighborhoods centered at all stations. (b) The spread of the p90 precipitation climatological

length scale for each NCEI region (see Fig. 1 for region delineations) and for each season on p90 days, where the

center line in the box is the 50th percentile of the length scales in the region, the bottom and top boundaries of the

box represent the 25th and 75th percentiles, respectively, and the bottom and top lines extend to the 1st and 99th

percentiles, respectively (EN 5 East North, WN 5 West North).
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North Central regions (differences of .135km in each

case) (Figs. 4b and 5a). In contrast, the largest JJA

variations occur between the West region (median

length scale ;220 km) and the Southwest region (me-

dian length scale of ;130km) (Figs. 4b and 5a).

In addition to these regional differences in median

length scale, we find that within-region spatial heteroge-

neity of length scales also varies across regions and sea-

sons. For example, in the Northeast, the DJF interquartile

range (IQR; ;90km) is triple the JJA IQR (;30km). In

contrast, the West exhibits an IQR of ;50–60km in all

seasons (Fig. 4b).

Although the magnitude of seasonal variations in cli-

matological length scales differ across regions, the dif-

ferences between seasonal length scales over each region

are generally statistically significant (p , 0.001; Fig. 5b)

and are plausibly related to underlying differences in the

seasonally and regionally varying atmospheric processes

FIG. 5. Magnitude and significance of (a) the intraregional differences in median p90 climatological length scales

for each season and (b) themedian intraseasonal differences in p90 climatological length scales for each region. The

shading of each grid represents the difference of the region and season in (a) and (b), respectively, on the y axis from

the region or season on the x axis. [For example, the blue bottom-right corner of theDJF panel in (a) shows that the

difference of the median p90 climatological length scale of the Central region from the median p90 climatological

length scale of the WN Central region is between 245 and 290 km.] The symbol inside each box represents the

adjusted p value of the Mann–WhitneyU test when testing for intraregional differences in (a) and of theWilcoxon

signed-rank sum test when testing for intraseasonal differences in (b) (EN 5 East North, WN 5 West North).
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that generate precipitation extremes. In most regions,

JJA median length scales are significantly smaller than

themedian length scales in other seasons (p, 0.001), and

DJF median length scales are significantly larger (p ,
0.001). (In theNorthwest, MAMmedian length scales are

smaller than the median length scales in other seasons,

and SONmedian length scales are larger.) The difference

between JJA and DJF median length scales is largest in

the South (difference of .135km), and the differences

between JJA and SON length scales are largest (differ-

ences of.90km in each case) over theEastNorthCentral,

South, and West North Central regions (Figs. 4b and 5b).

Although there is still a clear seasonal cycle in the

Northwest and Southwest (Fig. 4b), the magnitude of

the variations among median seasonal length scales re-

main below 45km (Fig. 5b).

b. Sensitivity of p90 length scales to neighborhood
size, relaxation, and station density

While the magnitude of length scales is sensitive to

neighborhood size, relaxation, and station density, the

overall patterns of regional and seasonal variations are

relatively robust across all methodological choices

assessed in our sensitivity analysis. Compared to length

scales when using a 500-km relaxed neighborhood,

using a smaller 300-km neighborhood yields a shorter

length scale in 90%–95% of stations across seasons, and

using a larger 700-km relaxed neighborhood yields a

longer length scale in 87%–93% of stations across sea-

sons (see Fig. S4). Compared to length scales calculated

using relaxed neighborhoods, using a restricted neigh-

borhood decreases extreme precipitation length scales

in DJF, MAM, and SON by less than 25% for the ma-

jority of stations (67%, 57%, and 57%, respectively);

also, 70% of the length scales in JJA increase by less

than 10% (see Fig. S4). Likewise, using uniform station

densities decreases length scales by up to 40% (see

Fig. S5).

Nonetheless, the regional variations in length scales

remain robust in the sensitivity tests. For example, the

Central region consistently has significantly longer

length scales than any other region in DJF, MAM, and

SON, while the Southwest region has the longest length

scales in JJA (see Fig. S6). The highest dependence of

regional variations on different methodological choices

is found in DJF. For instance, when using a 700-km

relaxed neighborhood, the difference between the

Northwest and West North Central length scale be-

comes positive and statistically significant. However,

large differences in interregional variations are rare.

The seasonal variations are also robust to using dif-

ferent neighborhood sizes and station densities, as well

as when using a restricted neighborhood method. For

example, DJF length scales are largest in the Central,

East North Central, South, Southeast, andWest regions,

while JJA length scales are smallest in all regions except

for the Northwest over all methodological choices. The

most prominent exceptions are the Northeast and West

North Central regions, where methodological choices

have a strong impact on the seasonal variations in length

scales (see Fig. S7 for more details).

We note that these sensitivity analyses do not test all

of the methodological choices in our framework.

Though we test the sensitivity to the neighborhood size

and the number of stations, we do not account for gra-

dients in station density within the neighborhood. Given

that the semivariogram calculation relies on the sepa-

ration distance between stations, such gradients could

ultimately bias our length scale calculation. For exam-

ple, denser station availability in one part of a neigh-

borhood could lead to a greater number of station pairs

included in the experimental semivariogram at smaller

separation distances from that part of the neighborhood.

These station pairs would weight the experimental

semivariogram at smaller separation distances, and

consequently impact our length scale calculation.

Additional untested factors include the size of sepa-

ration distance intervals for the calculation of the ex-

perimental semivariogram, the maximum separation

distance to which the semivariograms are calculated, the

years over which p90 thresholds and length scales are

calculated, and the 10% threshold for choosing p90 days.

However, our analysis shows that while the absolute

magnitude of length scales can be sensitive to method-

ological choices (especially neighborhood size), the

seasonal and regional differences in length scales are

relatively robust.

5. Discussion and conclusions

This study presents a method for quantifying re-

gional and seasonal variations in the spatial extent of

extreme precipitation using station data, which is

foundational to investigating changes in extreme pre-

cipitation in a warming world. Our method is advan-

tageous in that the relaxed moving neighborhood

allows for an assessment over a large region, and the

geostatistical techniques we use allow us to employ

longer station datasets without relying on interpolated

precipitation data. Until the representations of ex-

treme precipitation in satellite, radar, interpolated, and

modeled datasets improve—and/or have been contin-

uously observing the climate system for a longer period

of time—our method can provide a foundation to un-

derstand the characteristics of extreme precipitation

using direct, in situ measurements.
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a. Linking length scales to seasonal and regional
atmospheric phenomena

The robust seasonal and regional variations in length

scales appear to correspond to well-known atmospheric

phenomena. The significantly shorter length scales of

extreme precipitation in the summer months over most

of the continental United States (with the exception of

the Pacific Northwest and northern Great Plains) is

characteristic of the intense but relatively localized

downpours associated with convective storms—which

tend to dominate warm-season precipitation in these

areas. The longest length scales in each region, on the

other hand, occur during winter (as do the highest me-

dian length scales in many areas)—coinciding with the

passage of larger ‘‘synoptic scale’’ cyclones as the jet

stream and associated storm track shift southward dur-

ing the cool season (Schneider et al. 2011).

However, our findings show that smaller-scale pro-

cesses could also be important in modifying the spatial

extent of extreme precipitation during the cooler sea-

sons. Short autumn, winter, and spring length scales in

the northwest (Fig. 4) are consistent with Rutz et al.

(2014), who show that heavy rainfall from atmospheric

rivers (ARs) rarely penetrate past the Cascade Range in

Washington and Oregon. In the rain-shadowed region

immediately to the east of the Cascades, regional to-

pography allows both westerly and southwesterly flows

to generate heavy precipitation regimes (e.g., Rutz et al.

2014)—resulting in a more heterogeneous distribution

of extremes, and shorter length scales. Farther to the

south (across California and western Nevada), however,

longer p90 length scales do extend farther inland. As in

the Pacific Northwest, this may be largely a product of

the coastal topography: California’s coastal mountains

are not as tall as the Cascades, and form a less perfect

barrier to east-moving Pacific moisture, allowing longer

length scales to extend inland across most of the state

(Rutz et al. 2014). The much taller Sierra Nevada range,

located along the eastern margin of California, has a

similar effect as the Cascades, resulting in a strongly

rain-shadowed region across the Great Basin in Nevada,

and an eastward decrease in p90 length scales.

We note that p90 length scales across California are

generally larger than across the PacificNorthwest, despite

the predominance of AR-driven autumn–winter–spring

extremes in both regions. We hypothesize that latitudinal

asymmetry in the spatial orientation of ARs may be par-

tially responsible for this difference. ARs may more fre-

quently be zonally (east–west) oriented in the north as

opposed to meridionally (north–south) oriented in the

south (Rutz et al. 2015),meaning that these extreme events

may affect a broader section of the north–south-oriented

coastline in Washington/Oregon than in California. An

assessment of the anisotropic length scales of extreme

precipitation along zonal and meridional axes could yield

further insights into topographical and storm track controls

along the Pacific coast.

Conversely, topography in the northeastern United

States plays a relatively smaller role in producing

heterogeneity in winter length scales. Here, a signifi-

cant fraction of winter extreme precipitation occurs

during strong coastal cyclones (known regionally as

‘‘nor’easters’’). These nor’easters generate large but

coastally confined swaths of extreme precipitation from

the upper mid-Atlantic (as far south as Delaware) to

northern New England (as far north as coastal Maine)

(Agel et al. 2015), which are shown by longer extreme

precipitation length scales along the coast. Shorter p90

length scales are found in the vicinity of the Great Lakes,

where a significant fraction of extreme wintertime pre-

cipitation results from intense but highly localized con-

vective ‘‘lake-effect snow’’ bands (Niziol et al. 1995).

During seasons other than winter, Northeastern p90

length scales are more spatially uniform—likely owing to

the importance of eastward-moving, large-scale cyclonic

storms in triggering precipitation extremes (Murray and

Colle 2011).

Although summer length scales are more spatially

uniform across the United States (relative to the cooler

seasons), we still observe differences in length scales

that coincide with regionalized summertime precipita-

tion regimes. For example, the band of longer length

scales across theGreat Plains and portions of theMidwest

(from southeast Texas to the edge of Lake Michigan)

coincides with the region where mesoscale convective

complexes (MCCs) most commonly form during the

warm season. MCCs are organized storm systems, but

they tend to have intermediate length scales (i.e., be-

tween larger-scale cyclones and individual thunder-

storms), and frequently result in intense rainfall and

severe weather across relatively broad regions (Laing

and Fritsch 1997). On the other hand, parts of the

Southeast, especially the Florida Peninsula and other

areas along the Gulf Coast, feature intense but highly

localized pulse or ‘‘popcorn’’ thunderstorms in the

summer months, yielding much shorter characteristic

length scales (Miller and Mote 2017). We note, how-

ever, that subdaily precipitation in the summer

follows a strong diurnal cycle (Higgins et al. 1997),

meaning that calculated length scales may be sensitive

to the time of observation of daily precipitation accu-

mulation among nearby stations.

In fact, given the daily temporal resolution of the

station dataset, interpretations of the length scales of

extreme precipitation in our results are not necessarily
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absolute. Longer length scales of daily extreme pre-

cipitation can be a result of a slow and large pre-

cipitation system, or a smaller but fast-moving system.

An assessment of the length scales of subdaily or mul-

tiday precipitation using our method could yield more

insight into the temporal controls on the length scales of

extreme precipitation. Similar to Zhou and Matyas

(2017), who assess the spatial characteristics of pre-

cipitation along hurricane tracks, our method could also

be used to quantify the length scale of extreme pre-

cipitation along the trajectory of a given precipitation

system by calculating the length scale of extreme pre-

cipitation around the centroid of the system. By fol-

lowing different storm tracks, we could disentangle the

physical processes that produce different length scales of

extreme precipitation for different types of precipitating

systems, such as tropical storms or atmospheric rivers.

b. Strengths, limitations, and applications of the
method

In contrast to the distinct regional and seasonal vari-

ations in climatological length scales found in our re-

sults, recent analyses of the spatial extents of extreme

precipitation using radar and satellite data show more

limited variations in climatological length scales within

and between regions, and between seasons. For exam-

ple, Guinard et al. (2015), who use 1-hourly radar data to

assess precipitation objects over the United States from

1992 to 2001, present subtler seasonal variations in the

size of precipitation objects over the Northeast, Central,

and Southeast regions. Similarly, we show much more

pronounced regional variations in p90 precipitation

length scales in the eastern half of the United States

(ranging from ;120 to 350 km; Fig. 5) than Dwyer and

O’Gorman (2017), who used satellite data from 1998–

2015 to assess the zonal length scale of p99 precipitation.

The magnified regional and seasonal variations found

in our climatological quantification of p90 precipitation

length scales may be a result of using a longer dataset,

and/or of using in situ measurements of extreme pre-

cipitation directly. Applying our method to the same

gridded datasets used in previous studies would help to

identify the source of discrepancies in the regional and

seasonal climatologies of extreme precipitation length

scales. On the other hand, if the gridded dataset in

question was originally oversmoothed, then applying

our method could still result in misleading magnitudes

of length scales due to that oversmoothing.

Discrepancies between our results and those of pre-

vious analyses could also be due to different thresholds

of precipitation and different periods over which

thresholds are calculated. In our study, long length

scales of p90 precipitation over regions with large

heterogeneities in p90 thresholds, such as east and west

of the Sierra Nevada, may not necessarily represent

extents of uniformly intense precipitation. In such re-

gions with small-scale variations in p90 precipitation

intensities resulting from topographic influences on

storm tracks, quantifying length scales of extreme pre-

cipitation using a single, uniform, absolute precipitation

threshold (rather than a percentile) may produce a more

meaningful assessment of high-impact precipitation

events, and may show more correspondence with pre-

vious uniform-threshold analyses of gridded datasets.

We also note that gauge measurements of rain and

snow possess their own uncertainties due to varying

gauge types, wind effects, and other factors (Rasmussen

et al. 2012; Sieck et al. 2007), which could impact our

extreme precipitation dataset and, consequently, the

calculated length scales. Although previous experi-

mental efforts have assessed measurement uncertainty

in rain and snow gauges in different locations (e.g.,

Tokay et al. 2010; Liu et al. 2013), we do not quantify

these uncertainties for all ;4500 stations in this study.

However, we directly use the station measurements to

infer length scales without smoothing or interpolating

the dataset, eliminating further uncertainties that our

extreme precipitation dataset could incur. Further, our

method provides a clear framework to assess the sensi-

tivity of our quantification of the length scale of extreme

precipitation to methodological choices.

Given that our methodological choices result in dif-

ferences in the magnitude of length scales, but not in

differences in relative regional and seasonal variations,

our framework could be used to assess relative changes

in the length scales over time, and to diagnose the

changes in atmospheric variables that shape any trends

that are detected. Although anthropogenic warming has

generally increased the intensity of extreme pre-

cipitation (e.g., O’Gorman 2015), Guinard et al. (2015)

show that the spatial extents of precipitation decreased

in 2002–11 compared to 1992–2001. Similarly, Wasko

et al. (2016) show that the spatial extents of rain storms

decrease with increased local temperatures (although

intensities of the storms increase). However, these

studies have been limited in their temporal and/or spa-

tial extent. Our method introduces the potential to

provide more robust assessment of trends in the length

scales over large continental areas, using longer station

records. For example, using our method, we could

quantify the length scale of extreme daily precipitation

at each location for each year, and then evaluate trends

in the length over the 50-yr period, while accounting for

spatial and temporal dependencies.

Moreover, the substantial heterogeneity in climato-

logical length scales within some of the ‘‘climatically
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consistent’’ NCEI regions (e.g., the Northeast, South,

and West North Central regions) points to potentially

complex relationships between changes in the spatial

extent of extreme precipitation and changes in atmo-

spheric processes. For example, after calculating trends

in length scale of extreme precipitation, we could sub-

sequently assess the thermodynamic and dynamic con-

tribution to those trends by quantifying the corresponding

trends in local temperature and precipitable water

(Trenberth et al. 2003; Trenberth 2011; O’Gorman 2015),

along with changes in the magnitude and spatial pat-

terns of geopotential heights and winds (Horton et al.

2015). In this way, we can begin to identify the causes of

changes in the spatial extent of extreme precipitation in

the recent past.

Our method and results can also be used to test re-

lationships between length scales of extreme pre-

cipitation and associated hydrologic responses—which

may enable a more comprehensive understanding of

regional flood risk. While the p90 precipitation thresh-

old encompasses events that are likely to have sub-

stantial hydrological impacts, a higher threshold (i.e.,

p99 or p99.9) may be better suited to examining events

that are most likely to result in severe flood events.

Future work will evaluate changes of precipitation

length scales using a range of precipitation thresholds,

with a focus on thresholds that are most likely to cause

adverse impacts to human and environmental systems.
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